[1] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016.[S.l.]: Springer International Publishing, 2016: 21-37.
[6] JIANG P, ERGU D, LIU F, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[7] XIE Y, HU W, XIE S, et al. Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15(2): 565-579.
[8] ZHAO C, SHU X, YAN X, et al. RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 2023, 214: 112776.
[9] WANG Y, WANG H, XIN Z. Efficient detection model of steel strip surface defects based on YOLO-V7[J]. IEEE Access, 2022, 10: 133936-133944.
[10] KOU X, LIU S, CHENG K, et al. Development of a YOLO-V3 based model for detecting defects on steel strip surface[J]. Measurement, 2021, 182: 109454.
[11] QIAN X, WANG X, YANG S, et al. LFF-YOLO: a YOLO algorithm with lightweight feature fusion network for multi-scale defect detection[J]. IEEE Access, 2022, 10: 130339-130349.
[12] HUANG Y, TAN W, LI L, et al. WFRE-YOLOv8s: a new type of defect detector for steel surfaces[J]. Coatings, 2023, 13(12): 2011.
[13] ZHANG J, WEI X, ZHANG L, et al. YOLO v7-ECA-PConv-NWD detects defective insulators on transmission lines[J]. Electronics, 2023, 12(18): 3969.
[14] XIE W, SUN X, MA W. A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8[J]. Measurement Science and Technology, 2024, 35(5): 055017.
[15] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[16] 王春梅, 刘欢. YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[17] ZHOU J, ZHANG B, YUAN X, et al.YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J].Infrared Physics and Technology, 2023, 131: 104703.
[18] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv:1805.10180, 2018.
[20] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[21] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear- units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[22] RUKUNDO O, CAO H. Nearest neighbor value interpol-ation[J]. arXiv:1211.1768, 2012.
[23] KIRKLAND E J. Bilinear interpolation[C]//Advanced Computing in Electron Microscopy, 2010: 261-263.
[24] MCKINLEY S, LEVINE M. Cubic spline interpolation[J]. College of the Redwoods, 1998, 45(1): 1049-1060.
[25] GAO H, YUAN H, WANG Z, et al. Pixel transposed convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 1218-1227.
[26] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[27] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,2011: 315-323.
[28] XU J, LI Z, DU B, et al. Reluplex made more practical: leaky ReLU[C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), 2020: 1-7.
[29] CRNJANSKI J, KRSTI? M, TOTOVI? A, et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron[J]. Optics Letters, 2021, 46(9): 2003-2006.
[30] MA N, ZHANG X, SUN J. Funnel activation for visual recognition[C]//Proceedings of the 16th European Conference on Computer Vision(ECCV 2020), Glasgow, UK, August 23-28, 2020.[S.l.]: Springer International Publishing, 2020: 351-368.
[31] HU J, SHEN L, SUN G. Squeeze-and-excitation network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[32] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[33] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[34] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[35] LI Z, WEI X, HASSABALLAH M, et al. A deep learning model for steel surface defect detection[J]. Complex & Intelligent Systems, 2023,10: 885-897.
[36] LV X, DUAN F, JIANG J, et al. Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors, 2020, 20(6): 1562.
[37] LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10096-10105.
[38] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024. |