Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (18): 50-65.DOI: 10.3778/j.issn.1002-8331.2401-0199
• Research Hotspots and Reviews • Previous Articles Next Articles
YU Qinwen, ZHOU Wangcheng, DAI Yakang, LIU Yan
Online:
2024-09-15
Published:
2024-09-13
于钦雯,周王成,戴亚康,刘燕
YU Qinwen, ZHOU Wangcheng, DAI Yakang, LIU Yan. Review of Codec Algorithms for Motor Imagery Brain-Computer Interface in Embedded System[J]. Computer Engineering and Applications, 2024, 60(18): 50-65.
于钦雯, 周王成, 戴亚康, 刘燕. 嵌入式系统中运动想象脑-机接口编解码算法综述[J]. 计算机工程与应用, 2024, 60(18): 50-65.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2401-0199
[1] ARPAIA P, ESPOSITO A, NATALIZIO A, et al. How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art[J]. Journal of Neural Engineering, 2022, 19(3): 031002. [2] ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35(20): 14681-14722. [3] PALUMBO A, IELPO N, CALABRESE B. An FPGA-embedded brain-computer interface system to support individual autonomy in locked-in individuals[J]. Sensors, 2022, 22(1): 318. [4] KRANA M, FARMAKI C, PEDIADITIS M, et al. SSVEP based wheelchair navigation in outdoor environments[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021: 6424-6427. [5] VILELA M, HOCHBERG L R. Applications of brain-computer interfaces to the control of robotic and prosthetic arms[J]. Handbook of Clinical Neurology, 2020, 168: 87-99. [6] TAMILARASI S, SUNDARARAJAN J. FPGA based seizure detection and control for brain computer interface[J]. Cluster Computing, 2019, 22(5): 11841-11848. [7] MANE R, CHOUHAN T, GUAN C. BCI for stroke rehabilitation: motor and beyond[J]. Journal of Neural Engineering, 2020, 17(4): 041001. [8] SHAO L, ZHANG L, BELKACEM A N, et al. EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface[J]. Journal of Healthcare Engineering, 2020:6968713. [9] KOBAYASHI N, ISHIZUKA K. LSTM-based classification of multiflicker-SSVEP in single channel dry-EEG for low-power/high-accuracy quadcopter-BMI system[C]//2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019: 2160-2165. [10] MKNIERIM M. OpenBCI+cEEGrids[EB/OL].[2021-03-18]. https://openbci.com/community/openbci-ceegrids/. [11] XIE Y, MAJOROS T, ONIGA S. FPGA-based hardware accelerator on portable equipment for EEG signal patterns recognition[J]. Electronics, 2022, 11(15): 2410. [12] SOHAL H, JAIN S. FPGA implementation of low power pre-processor design for biomedical signal processing application[M]//Computational and experimental methods in mechanical engineering. Singapore: Springer, 2022: 489-497. [13] SEOK D, LEE S, KIM M, et al. Motion artifact removal techniques for wearable EEG and PPG sensor systems[J]. Frontiers in Electronics, 2021, 2: 685513. [14] JAFARI A, GANDHI S, KONURU S H, et al. An EEG artifact identification embedded system using ICA and multi-instance learning[C]//2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017: 1-4. [15] LIN C T, LIN F C, CHEN S A, et al. EEG-based brain-computer interface for smart living environmental auto-adjustment[J]. Journal of Medical and Biological Engineering, 2010, 30(4): 237-245. [16] KHURANA K, GUPTA P, PANICKER R C, et al. Development of an FPGA-based real-time P300 speller[C]//22nd International Conference on Field Programmable Logic and Applications (FPL), 2012: 551-554. [17] LI G, CHUNG W Y. Combined EEG-gyroscope-tDCS brain machine interface system for early management of driver drowsiness[J]. IEEE Transactions on Human-Machine Systems, 2017, 48(1): 50-62. [18] BELWAFI K, GHAFFARI F, DJEMAL R, et al. A hardware/software prototype of EEG-based BCI system for home device control[J]. Journal of Signal Processing Systems, 2017, 89: 263-279. [19] SHAKEEL A, TANAKA T, KITAJO K. Time-series prediction of the oscillatory phase of EEG signals using the least mean square algorithm-based AR model[J]. Applied Sciences, 2020, 10(10): 3616. [20] MALEKMOHAMMADI A, MOHAMMADZADE H, CHAMANZAR A, et al. An efficient hardware implementation for a motor imagery brain computer interface system[J]. Scientia Iranica, 2019, 26: 72-94. [21] MARCOS R C L, CHAILLOUX P J D, ALBA BLANCO E. Real time identification of motor imagery actions on EEG signals[J]. Ingeniería Electrónica, Automáticay Comunicaciones, 2020, 41(1): 101-117. [22] ASANZA V, CONSTANTINE A, VALAREZO S, et al. Implementation of a classification system of EEG signals based on FPGA[C]//2020 Seventh International Conference on Democracy & eGovernment (ICEDEG), 2020: 87-92. [23] PRONO L, MARCHIONI A, MANGIA M, et al. An MCU implementation of PCA/PSA streaming algorithms for EEG features extraction[C]//2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2021: 1-5. [24] VASEI T, SABER M A, NAHVY A, et al. An efficient RTL design for a wearable brain-computer interface[J]. IET Computers & Digital Techniques, 2024. [25] DORNHEGE G, BLANKERTZ B, KRAULEDAT M, et al. Combined optimization of spatial and temporal filters for improving brain-computer interfacing[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2274-2281. [26] WU W, GAO X, HONG B, et al. Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(6): 1733-1743. [27] ZHANG H, CHIN Z Y, ANG K K, et al. Optimum spatio-spectral filtering network for brain-computer interface[J]. IEEE Transactions on Neural Networks, 2010, 22(1): 52-63. [28] 王亮. 基于FPGA的运动想象脑电信号的分类识别研究[D].淮南:安徽理工大学, 2020. WANG L. Based on the movement of the FPGA imagine EEG classification research[D]. Huainan:Anhui University of Science and Technology, 2020. [29] ELLAWALA N, THAYAPARAN S. Hardware implementation of EEG classifier using LDA[C]//2019 2nd International Conference on Bioinformatics, Biotechnology and Biomedical Engineering (BioMIC)-Bioinformatics and Biomedical Engineering, 2019: 1-5. [30] RIZAL A, HADIYOSO S, RAMDANI A Z. FPGA-based implementation for real-time epileptic EEG classification using hjorth descriptor and KNN[J]. Electronics, 2022, 11(19): 3026. [31] LYU S, CHOWDHURY M H, CHEUNG R C C. Efficient hardware and software co-design for EEG signal classification based on extreme learning machine[C]//2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2023: 1-5. [32] MOHEBBANAAZ, RAJANI KUMARI L V, PADMA SAI Y. Classification of arrhythmia beats using optimized K-nearest neighbor classifier[C]//Intelligent Systems: Proceedings of ICMIB 2020. Singapore :Springer, 2021: 349-359. [33] EKAPUTRI C, FUADAH Y N, PRATIWI N K C, et al. Drowsiness detection based on EEG signal using discrete wavelet transform (DWT) and K-Nearest Neighbors (K-NN) methods[C]//Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics (ICEBEHI 2020), Surabaya, Indonesia, October 8-9 2020. Singapore :Springer, 2021: 487-498. [34] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [35] NIKITAKIS A, MAKANTASIS K, TAMPOURATZIS N, et al. A unified novel neural network approach and a prototype hardware implementation for ultra-low power EEG classification[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(4): 670-681. [36] WANG W, HUANG Y, WANG Y, et al. Generalized autoencoder: a neural network framework for dimensionality reduction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014: 490-497. [37] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [38] MWATA-VELU T, RUIZ-PINALES J, ROSTRO-GONZALEZ H, et al. Motor imagery classification based on a recurrent-convolutional architecture to control a hexapod robot[J]. Mathematics, 2021, 9(6): 606. [39] MA X, ZHENG W, PENG Z, et al. FPGA-based rapid electroencephalography signal classification system[C]//2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), 2019: 223-227. [40] MAITI S, ANAMIKA, MANDAL A S, et al. Classification of motor imagery EEG signal for navigation of brain controlled drones[C]//Proceedings of 11th International Conference on Intelligent Human Computer Interaction (IHCI 2019), Allahabad, India, December 12-14, 2019. [S.l.]: Springer International Publishing, 2020: 3-12. [41] LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15(5): 056013. [42] MWATA-VELU T, NIYONSABA-SEBIGUNDA E, AVINA-CERVANTES J G, et al. Motor imagery multi-tasks classification for BCIs using the NVIDIA Jetson TX2 board and the EEGNet network[J]. Sensors, 2023, 23(8): 4164. [43] TORRES-VALVERDE L, IMAMOGLU N, GONZALEZ-TORRES A, et al. Evaluation of neural networks with data quantization in low power consumption devices[C]//2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), 2020: 1-4. [44] INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces[C]//2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020: 2958-2965. [45] SALAMI A, ANDREU-PEREZ J, GILLMEISTER H. EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification[J]. IEEE Access, 2022, 10: 36672-36685. [46] MA W, GONG Y, XUE H, et al. A lightweight and accurate double-branch neural network for four-class motor imagery classification[J]. Biomedical Signal Processing and Control, 2022, 75: 103582. [47] JIA Z, LIN Y, WANG J, et al. MMCNN: a multi-branch multi-scale convolutional neural network for motor imagery classification[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham:Springer, 2020: 736-751. [48] ZOU X, GUO Z, CHENG Q, et al. An enhanced convolution neural network model based on depthwise-separable convolutions for pneumonia classification[C]//2022 12th International Conference on Information Technology in Medicine and Education (ITME), 2022: 423-428. [49] ALTUWAIJRI G A, MUHAMMAD G. A multibranch of convolutional neural network models for electroencephalogram-based motor imagery classification[J]. Biosensors, 2022, 12(1): 22. [50] LEE H K, MYOUNG J S, CHOI Y S. A lightweight end-to-end neural networks for decoding of motor imagery brain signal[C]//2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2022: 411-413. [51] PULLINI A, ROSSI D, LOI I, et al. Mr. Wolf: an energy-precision scalable parallel ultra low power SoC for IoT edge processing[J]. IEEE Journal of Solid-State Circuits, 2019, 54(7): 1970-1981. [52] WANG X, HERSCHE M, T?MEKCE B, et al. An accurate eegnet-based motor-imagery brain-computer interface for low-power edge computing[C]//2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020: 1-6. [53] 唐旭东. 基于卷积神经网络与微控制器的便携式运动想象脑电信号解码器研究[D].杭州: 杭州电子科技大学, 2023. TANG X D. Research on portable motion imagination EEG signal decoder based on convolutional neural networks and microcontrollers[D]. Hangzhou: Hangzhou Dianzi University, 2023. [54] SUDHARSAN B, SALERNO S, NGUYEN D D, et al. TinyML benchmark: executing fully connected neural networks on commodity microcontrollers[C]//World Forum on Internet of Things (WF-IoT), 2021:883-884. [55] RIYADI M A, PRAKOSO T, WHAILLAN F O, et al. Classification of EEG-based brain waves for motor imagery using support vector machine[C]//2019 International Conference on Electrical Engineering and Computer Science (ICECOS), 2019: 422-425. [56] SUBRATA A C, RIYADI M A, PRAKOSO T. EEG-based BMI using multi-class motor imagery for bionic arm[C]//2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), 2020: 255-260. [57] SCHNEIDER T, WANG X, HERSCHE M, et al. Q-EEGNet: an energy-efficient 8-bit quantized parallel EEGNet implementation for edge motor-imagery brain-machine interfaces[C]//2020 IEEE International Conference on Smart Computing (SMARTCOMP), 2020: 284-289. [58] WANG X, HERSCHE M, MAGNO M, et al. MI-BMInet: an efficient convolutional neural network for motor imagery brain--machine interfaces with EEG channel selection[J]. arXiv:2203.14592, 2022. [59] KORHAN N, DOKUR Z, OLMEZ T. Motor imagery based EEG classification by using common spatial patterns and convolutional neural networks[C]//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 2019: 1-4. [60] LIN J S, SHE B H. A BCI system with motor imagery based on bidirectional long-short term memory[C]//IOP Conference Series: Materials Science and Engineering.[S.l.]: IOP Publishing, 2020: 012026. [61] DARVISH R B, LO D, ZHAO R, et al. Pushing the limits of narrow precision inferencing at cloud scale with microsoft floating point[C]//Advances in Neural Information Processing Systems, 2020: 10271-10281. [62] LIN Q, SONG S, CASTRO I D, et al. Wearable multiple modality bio-signal recording and processing on chip: a review[J]. IEEE Sensors Journal, 2020, 21(2): 1108-1123. [63] HERNANDEZ-RUIZ A C, ENéRIZ D, MEDRANO N, et al. Motor-imagery EEGNet-based processing on a low-Spec SoC hardware[C]//2021 IEEE Sensors, 2021: 1-4. [64] TSUKAHARA A, ANZAI Y, TANAKA K, et al. A design of EEGNet‐based inference processor for pattern recognition of EEG using FPGA[J]. Electronics and Communications in Japan, 2021, 104(1): 53-64. [65] FLOOD D, ROBINSON N, SHREEJITH S. FPGA-based deep-learning accelerators for energy efficient motor imagery EEG classification[C]//2022 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), 2022: 1-6. [66] 任超. 基于深度学习的脑电识别算法研究及FPGA实现[D]. 西安:西安理工大学, 2021. REN C. Research on EEG recognition algorithm based on deep learning and FPGA implementation[D]. Xi’an: Xi’an University of Technology, 2021. [67] LOTTE F, CONGEDO M, LéCUYER A, et al. A review of classification algorithms for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2007, 4(2): R1. [68] KüBLER A, NEUMANN N, KAISER J, et al. Brain-computer communication: self-regulation of slow cortical potentials for verbal communication[J]. Archives of Physical Medicine and Rehabilitation, 2001, 82(11): 1533-1539. [69] BELWAFI K, GANNOUNI S, ABOALSAMH H. Embedded brain computer interface: state-of-the-art in research[J]. Sensors, 2021, 21(13): 4293. [70] SPEIER W, ARNOLD C, POURATIAN N. Evaluating true BCI communication rate through mutual information and language models[J]. PLoS One, 2013, 8(10): e78432. |
[1] | SONG Shilin, ZHANG Xuejun. Algorithm Research Based on Multi-Feature Fusion of EEG Signals with Convolutional Neural Networks [J]. Computer Engineering and Applications, 2024, 60(8): 148-155. |
[2] | LIU Jing, KANG Xiaohui, DONG Zehao, LI Xuan, ZHAO Wei, WANG Yu. Motion Imagery Signal Analysis Incorporating Spatio-Temporal Adaptive Graph Convolution [J]. Computer Engineering and Applications, 2024, 60(11): 115-128. |
[3] | GUO Mingzhen, WANG Wei, SHEN Hongting, HOU Hongtao, LIU Kuan, LUO Zijiang. Improved Lightweight Target Detection Algorithm for YOLOv4-tiny [J]. Computer Engineering and Applications, 2023, 59(23): 145-153. |
[4] | XU Xuetian, CAI Yuexin. Motor Imagery Recognition Based on Graph Convolution Network [J]. Computer Engineering and Applications, 2022, 58(4): 186-191. |
[5] | ZHU Yongqing, WANG Wenge. Research on Multi-Dimensional Feature Extraction and Classification Algorithm of EEG Signal [J]. Computer Engineering and Applications, 2022, 58(13): 146-153. |
[6] | ZHU Yue, LI Chunguang, GUO Hao, ZHU Yufei, SUN Lining. Review on Mechanism Research and Application of Motor Imagery [J]. Computer Engineering and Applications, 2020, 56(10): 10-19. |
[7] | GUO Lin, SUN Qinglin, CHEN Sai, CHEN Zengqiang, JIA Hongchen. Design of Powered Parafoil System Based on Real-Time Multitask Operating System [J]. Computer Engineering and Applications, 2019, 55(16): 227-234. |
[8] | PAN Jie1, WATANABE Masahiko2, ZHOU Kuanjiu1, LIANG Haoran1, CUI Kai1. Formal modeling approach for embedded software [J]. Computer Engineering and Applications, 2018, 54(8): 61-71. |
[9] | ZHAO Bo1,2, LI Erhui1,2, MA Jun1,2, HUANG Yuqing1,2. Security-enhanced key generation scheme based on USB Key [J]. Computer Engineering and Applications, 2018, 54(10): 135-142. |
[10] | LI Xiaodan. Design of IOT embedded gateway based on STM32 [J]. Computer Engineering and Applications, 2015, 51(4): 61-65. |
[11] | MA Ning, CHEN Xiaodong, LI Yanan, YIN Qingyun, WANG Yi, YU Daoyin. Speech recognition for endoscopic automatic positioning system [J]. Computer Engineering and Applications, 2014, 50(8): 207-210. |
[12] | XUE Shishuai, LIU Dan, XU Zhan, LI Jianhong. Design of secure file system for active RFID tag [J]. Computer Engineering and Applications, 2014, 50(24): 47-49. |
[13] | ZHAO Bo1,2, FEI Yongkang1,2, XIANG Shuang1,2, LI Yifan1,2. Research and implementation of secure boot mechanism for embedded systems [J]. Computer Engineering and Applications, 2014, 50(10): 72-77. |
[14] | FAN Tao1, LIU Gaohui1, YE Xiaochun2, LI Wenming2, SONG Shuang2, FAN Dongrui2. Research and implementation of source-level debugging system on SPARC platform simulator [J]. Computer Engineering and Applications, 2013, 49(4): 65-70. |
[15] | LI Yefan1,2, ZHANG Kailong1,2, YAO Longhui1,2, ZHOU Xingshe1,2. Optimized generating algorithm of various styles patterns for intelligent sewing equipment [J]. Computer Engineering and Applications, 2012, 48(8): 168-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||