[1] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
[2] LU Y, HUANG X, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311.
[3] LU Y, HUANG X, DAI Y, et al. Differentially private asynchronous federated learning for mobile edge computing in urban informatics[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2134-2143.
[4] LU Y, HUANG X, DAI Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 4177-4186.
[5] PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333-1345.
[6] BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017: 1175-1191.
[7] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017: 1273-1282.
[8] FUNG C, YOON C J M, BESCHASTNIKH I. Mitigating sybils in federated learning poisoning[J]. arXiv:1808.04866, 2018.
[9] CAO D, CHANG S, LIN Z, et al. Understanding distributed poisoning attack in federated learning[C]//Proceedings of the 25th IEEE International Conference on Parallel and Distributed Systems, 2019: 233-239.
[10] LI S, CHENG Y, LIU Y, et al. Abnormal client behavior detection in federated learning[J]. arXiv:1910.09933, 2019.
[11] YIN D, CHEN Y, KANNAN R, et al. Byzantine-robust distributed learning: towards optimal statistical rates[C]//Proceedings of the International Conference on Machine Learning, 2018: 5650-5659.
[12] RIVEST R L, ADLEMAN L M, DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169-180.
[13] CANETTI R, FEIGE U, GOLDREICH O, et al. Adaptively secure multi-party computation[C]//Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996: 639-648.
[14] GENTRY C. Fully homomorphic encryption using ideal lattices[C]//Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009: 169-178.
[15] 崔建京, 龙军, 闵尔学, 等. 同态加密在加密机器学习中的应用研究综述[J]. 计算机科学, 2018, 45(4): 46-52.
CUI J J, LONG J, MIN E X, et al. Survey on application of homomorphic encryption in encrypted machine learning[J]. Computer Science, 2018, 45(4): 46-52.
[16] YAO A C. How to generate and exchange secrets[C]//Proceedings of the 27th Annual Symposium on Foundations of Computer Science, 1986: 162-167.
[17] DWORK C. Differential privacy: a survey of results[C]//Proceedings of the International Conference on Theory and Applications of Models of Computation, 2008: 1-19.
[18] REZA S, VITALY S. Privacy-preserving deep learning[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015: 1310-1321.
[19] HITAJ B, ATENIESE G, PEREZ-CRUZ F. Deep models under the GAN: information leakage from collaborative deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017: 603-618.
[20] GEYER R C, KLEIN T, NABI M. Differentially private federated learning: a client level perspective[J]. arXiv:1712. 07557, 2017.
[21] XUAN G, ABHISHEK S, SRIKRISHNA K, et al. Preserving privacy in federated learning with ensemble cross-domain knowledge distillation[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 11891-11899.
[22] CHEN F, YUAN B, HAN Y J, et al. Efficient federated learning for privacy-preserving communication in IoT[J]. Computers & Security, 2021, 103: 102199.
[23] WANG J, GUO S, XIE X, et al. Protect privacy from gradient leakage attack in federated learning[C]//Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, 2022: 580-589.
[24] CHEN W N, OZGUR A, KAIROUZ P. The Poisson binomial mechanism for unbiased federated learning with secure aggregation[C]//Proceedings of the International Conference on Machine Learning, 2022: 3490-3506.
[25] BRAILOVSKY V L. An approach to outlier detection based on bayesian probabilistic model[C]//Proceedings of the 13th International Conference on Pattern Recognition, 1996: 70-74.
[26] TAO Y, PI D. Unifying density-based clustering and outlier detection[C]//Proceedings of 2009 Second International Workshop on Knowledge Discovery and Data Mining, 2009: 644-647.
[27] 宋金玉, 郭一平, 王斌. DBSCAN聚类算法的参数配置方法研究[J]. 计算机技术与发展, 2019, 29(5): 44-48.
SONG J Y, GUO Y P, WANG B. Research on parameter configuration method of dbscan clustering algorithm[J]. Computer Technology and Development, 2019, 29(5): 44-48.
[28] SO J, AMIR S A. Byzantine-resilient secure federated learning[J]. IEEE Journal of Selected Areas in Communications, 2021, 39(7): 2168-2181.
[29] DONG Y, CHEN X, LI K, et al. FLOD: oblivious defender for private Byzantine-robust federated learning with dishonest-majority[C]//Proceeding of 26th European Symposium on Research in Computer Security, 2021: 497-518. |