[1] 罗小权, 潘善良. 改进YOLOV3的火灾检测方法[J]. 计算机工程与应用, 2020, 56(17): 187-196.
LUO X Q, PAN S L. Improved YOLOV3 fire detection method[J]. Computer Engineering and Applications, 2020, 56(17): 187-196.
[2] 喻丽春, 刘金清. 基于改进Mask R-CNN的火焰图像识别算法[J]. 计算机工程与应用, 2020, 56(21): 194-198.
YU L C, LIU J Q. Fire image recognition algorithm based on improved Mask R-CNN[J]. Computer Engineering and Applications, 2020, 56(21): 194-198.
[3] 张正贺, 黄贞, 陈汝婷, 等. 基于投影式背景纹影技术的火焰温度场测量仪设计[J]. 激光与光电子学进展, 2019, 56(5): 235-242.
ZHANG Z H, HUANG Z, CHEN R T, et al. Design of flame temperature measurement instrument based on projective background-oriented schlieren technique[J]. Laser & Optoelectronics Progress, 2019, 56(5): 235-242.
[4] CIPRIáN-SáNCHEZ J F, OCHOA-RUIZ G, GONZALEZ-MENDOZA M, et al. FIRe-GAN: a novel deep learning-based infrared-visible fusion method for wildfire imagery[J]. Neural Computing and Applications, 2021, 35: 18201-18213.
[5] CHEN X W, HOPKINS B, WANG H, et al. Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset[J]. IEEE Access, 2022, 10: 121301-121317.
[6] KACKER T, PERRUSQUIA A, GUO W S. Multi-spectral fusion using generative adversarial networks for UAV detection of wild fires[C]//Proceedings of the 2023 International Conference on Artificial Intelligence in Information and Communication, 2023: 182-187.
[7] TLIG M, BOUCHOUICHA M, SAYADI M, et al. Infrared-visible images’ fusion techniques for forest fire monitoring[C]//Proceedings of the 2022 6th International Conference on Advanced Technologies for Signal and Image Processing, 2022: 1-6.
[8] NEMALIDINNE S M, GUPTA D. Nonsubsampled contourlet domain visible and infrared image fusion framework for fire detection using pulse coupled neural network and spatial fuzzy clustering[J]. Fire Safety Journal, 2018, 101: 84-101.
[9] 王继霄, 李阳, 王家宝, 等. 基于SqueezeNet的轻量级图像融合方法[J]. 计算机应用, 2020, 40(3): 837-841.
WANG J X, LI Y, WANG J B, et al. Lightweight image fusion method based on SqueezeNet[J]. Computer Applications, 2020, 40(3): 837-841.
[10] 侯春萍, 王霄聪, 夏晗, 等. 基于双通路生成对抗网络的红外与可见光图像融合方法[J]. 激光与光电子学进展, 2021, 58(14): 318-327.
HOU C P, WANG X C, XIA H, et al. Infrared and visible image fusion method based on dual-channel generative adversarial network[J]. Laser & Optoelectronics Progress, 2021, 58(14): 318-327.
[11] 尹来国, 孙仁诚, 邵峰晶, 等. 多模式生成对抗网络[J]. 计算机应用研究, 2022, 39(6): 1689-1693.
YIN L G, SUN R C, SHAO F J, et al. Multi-mode generative adversarial network[J]. Application Research of Computers, 2022, 39(6): 1689-1693.
[12] 陈强, 朱立新, 夏德深. 结合Canny算子的图像二值化[J]. 计算机辅助设计与图形学学报, 2005, 17(6): 1302-1306.
CHEN Q, ZHU L X, XIA D S. Image binarization based on canny’s operator[J]. Journal of Compute-Aided Design and Graphics, 2005, 17(6): 1302-1306.
[13] 曲海成, 佟畅, 刘万军. 注意力与多尺度融合的图像阴影去除算法[J]. 计算机工程与应用, 2022, 58(16): 234-241.
QU H C, TONG C, LIU W J. Image shadow removal algorithm based on attention and multi-scale fusion[J]. Computer Engineering and Applications, 2022, 58(16): 234-241.
[14] 李晨瑄, 钱坤, 胥辉旗. 基于深浅层特征融合的舰船要害关键点检测算法[J]. 系统工程与电子技术, 2021, 43(11): 3239-3249.
LI C X, QIAN K, XU H Q. Detection algorithm of key points of ships based on deep and shallow feature fusion[J]. Systems Engineering and Electronics, 2021, 43(11): 3239-3249.
[15] CHAI X, WANG Y, CHEN X, et al. TPE-GAN: thumbnail preserving encryption based on GAN with key[J]. IEEE Signal Processing Letters, 2022, 29: 972-976.
[16] GUO Y, LI H, ZHUANG P. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 862-870.
[17] 沈怀艳, 吴云. 基于MSFA-Net的肝脏CT图像分割方法[J]. 计算机科学与探索, 2023, 17(3): 646-656.
WU H Y, WU Y. Liver CT image segmentation method based on MSFA-Net[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(3): 646-656.
[18] 马永康, 刘华, 凌成星, 等. 基于改进YOLOv5的红树林单木目标检测研究[J]. 激光与光电子学进展, 2022, 59(18): 1828003.
MA Y K, LIU H, LIING C X, et al. Object detection of individual mangrove based on improved YOLOv5[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1828003.
[19] LIU K H, YE Z H, GUO H Y, et al. FISS GAN: a generative adversarial network for foggy image semantic segmentation[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(8): 1428-1439.
[20] 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610.
XIAO H B, XIAO Y F, LIU Y. Long text generation adversarial network model incorporating self-attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610.
[21] 程艳, 蔡壮, 吴刚, 等. 结合自注意力特征过滤分类器和双分支GAN的面部表情识别[J]. 模式识别与人工智能, 2022, 35(3): 243-253.
CHENG Y, CAI Z, WU G, et al. Facial expression recognition based on self-attention feature filter classifier and two-branch GAN[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 243-253.
[22] 苏晏园, 范广宇, 龚海梅, 等. InGaAs近红外人脸图像检测超轻量算法研究[J]. 红外与激光工程, 2022, 51(10): 343-352.
SU Y Y, FAN G Y, GONG H M, et al. Research on ultra-lightweight algorithm for InGaAs near-infrared face image detection[J]. Infrared and Laser Engineering, 2022, 51(10): 343-352.
[23] 刘朋远, 田瑞, 周媛奉, 等. 基于自适应混合阈值的智能电表图像二值化[J]. 计算机应用与软件, 2023, 40(1): 210-215.
LIU P Y, TIAN R, ZHOU Y F, et al. Smart meter image binarization based on adaptive mixing threshold[J]. Computer Applications and Software, 2023, 40(1): 210-215.
[24] YANG Z G, CHEN Y P, LE Z L, et al. GANFuse: a novel multi-exposure image fusion method based on generative adversarial networks[J]. Neural Computing & Applications, 2021, 33(11): 6133-6145.
[25] 刘锃亮, 张宇, 吕恒毅. 基于生成对抗网络的可见光与红外图像融合[J]. 无线电工程, 2022, 52(4): 555-561.
LIU Z L, ZHANG Y, LV H Y. Fusion of visible and infrared images based on generative adversarial networks[J]. Radio Engineering, 2022, 52(4): 555-561.
[26] 韩正汀, 路文, 杨舒羽, 等. 基于导向滤波优化的自然图像去雾新方法[J]. 计算机科学与探索, 2015, 9(10): 1256-1262.
HAN Z T, LU W, YANG S Y, et al. Improved natural image dehazing algorithm based on guided filtering[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(10): 1256-1262.
[27] LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5792-5801.
[28] WANG T, HE J B, XIONG S H, et al. Visual perception enhancement for HEVC compressed video using a generative adversarial network[C]//Proceedings of the 2020 International Conference on UK-China Emerging Technologies, 2020: 1-4. |