[1] 郭喜跃, 何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015, 42(2): 14-17.
GUO X Y, HE T T. Survey about research on information extraction[J]. Computer Science, 2015, 42(2): 14-17.
[2] BOSSELUT A, LE BRAS R, CHOI Y. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(6): 4923-4931.
[3] LI M. ZHU Y, WANG R. An empirical study on utilizing neural network for event information retrieval[C]//Proceedings of the 2020 International Conference on Computer Science and Communication Technology, 2020: 51-56.
[4] LI M, ZAREIAN A, LIN Y, et al. GAIA: a fine-grained multimedia knowledge extraction system[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020: 77-86.
[5] 胡瑞娟, 周会娟, 刘海砚, 等. 基于深度学习的篇章级事件抽取研究综述[J]. 计算机工程与应用, 2022, 58(24): 47-60.
HU R J, ZHOU H J, LIU H Y, et al. Survey on document-level event extraction based on deep learning[J]. Computer Engineering and Applications, 2022, 58(24): 47-60.
[6] RILOFF E. Automatically constructing a dictionary for information extraction tasks[C]//Proceedings of the 11th National Conference on Artificial Intelligence, 1993: 811-816.
[7] LI Q, JI H, HUANG L. Joint event extraction via structured prediction with global features[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013: 73-82.
[8] 陈星月, 倪丽萍, 倪志伟. 基于ELECTRA模型与词性特征的金融事件抽取方法研究[J]. 数据分析与知识发现, 2021, 5(7): 36-47.
CHEN X Y, NI L P, NI Z W. Extracting financial events with ELECTRA and part-of-speech[J]. Data Analysis and Knowledge Discovery, 2021, 5(7): 36-47.
[9] 万齐智, 万常选, 胡蓉, 等. 基于句法语义依存分析的中文金融事件抽取[J]. 计算机学报, 2021, 44(3): 508-530.
WAN Q Z, WAN C X, HU R, et al. Chinese financial event extraction base on syntactic and semantic dependency parsing[J]. Chinese Journal of Computers, 2021, 44(3): 508-530.
[10] WANG P, DENG Z, CUI R. TDJEE: a document-level joint model for financial event extraction[J]. Electronics, 2021, 10(7): 824.
[11] NGUYEN T H, GRISHMAN R. Event detection and domain adaptation with Convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 365-371.
[12] NGUYEN T H, CHO K, GRISHMAN R. Joint event extraction via recurrent neural networks[C]//Proceedings of the Annual Conference on North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 300-309.
[13] WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, 2019: 5784-5789.
[14] DU X, CARDIE C. Document-level event role filler extraction using multi-granularity contextualized encoding[C]//Proceedings of the Association for Computational Linguistics, 2020: 634-644.
[15] YANG H, CHEN Y, LIU K, et al. DCFEE: a document-level Chinese financial event extraction system based on automatically labeled training data[C]//Proceedings of the Association for Computational Linguistics, 2018: 50-55.
[16] ZHENG S, CAO W, XU W, et al. Doc2EDAG: an end-to-end document-level framework for Chinese financial event extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, 2019: 337-346.
[17] XU R, LIU T, LI L, et al. Document-level event extraction via heterogeneous graph-based interaction model with a tracker[C]//Proceedings of the Joint Conference on 59th Annual Meeting of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2021: 3533-3546.
[18] ZHU T, QU X, CHEN W L, et al. Efficient document-level event extraction via pseudo-trigger-aware pruned complete graph[C]//Proceedings of International Joint Conference on Artificial Intelligence, 2022: 4552-4558.
[19] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference on North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[20] LI X. DuEE-Fin: a document-level event extraction dataset in the financial domain released by baidu[EB/OL]. (2021)[2023-04-06]. https://aistudio.baidu.com/aistudio/competition/detail/46.
[21] HERMANS J R, SPANAKIS G, M?CKEL R. Accumulated gradient normalization[C]//Proceedings of the Asian Conference on Machine Learning, 2017: 439-454.
[22] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019. |