Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (10): 217-226.DOI: 10.3778/j.issn.1002-8331.2301-0230
• Graphics and Image Processing • Previous Articles Next Articles
KANG Yue, YANG Jun
Online:
2024-05-15
Published:
2024-05-15
康玥,杨军
KANG Yue, YANG Jun. Large-Scale Point Cloud Segmentation by Learnable Dynamic Grouping Convolutional Neural Network[J]. Computer Engineering and Applications, 2024, 60(10): 217-226.
康玥, 杨军. 可学习动态分组卷积神经网络的大规模点云分割[J]. 计算机工程与应用, 2024, 60(10): 217-226.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2301-0230
[1] 郝雯, 张雯静, 梁玮, 等. 面向三维点云的场景识别方法综述[J]. 光学精密工程, 2022, 30(16): 1988-2005. HAO W, ZHANG W J, LIANG W, et al. Scene recognition for 3D point clouds: a review[J]. Optics and Precision Engineering, 2022, 30(16): 1988-2005. [2] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 77-85. [3] QI C R, LI Y, HAO S, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Cambridge: MIT Press, 2017: 5099-5108. [4] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. [5] 杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学精密工程, 2020, 28(5): 1187-1199. YANG J, DANG J S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Optics and Precision Engineering, 2020, 28(5): 1187-1199. [6] WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10288-10297. [7] TECHNICOLOR T, RELATED S, TECHNICOLOR T, et al. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [8] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7?13, 2015. Piscataway: IEEE, 2015: 945-953. [9] FENG Y F, ZHANG Z Z, ZHAO X B, et al. GVCNN: group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 264-272. [10] 郑阳, 林春雨, 廖康, 等. 场景视点偏移的激光雷达点云分割[J]. 中国图象图形学报, 2021, 26(10): 2514-2523. ZHENG Y, LIN C Y, LIAO K, et al. LiDAR point cloud segmentation through scene viewpoint offset[J]. Journal of Image and Graphics, 2021, 26(10): 2514-2523. [11] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Sep 28-Oct 2, 2015. Piscataway: IEEE, 2015: 922-928. [12] RIEGLER G, ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6620-6629. [13] ZENG W, GEVERS T. 3DContextNet: K-D tree guided hierarchical learning of point clouds using local and global contextual cues[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 314-330. [14] MENG H Y, GAO L, LAI Y K, et al. VV-Net: voxel VAE net with group convolutions for point cloud segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8499-8507. [15] 党吉圣, 杨军. 多特征融合的三维模型识别与分割[J]. 西安电子科技大学学报, 2020, 47(4): 149-157. DANG J S, YANG J. 3D model recognition and segmentation based on multi-feature fusion[J]. Journal of Xidian University, 2020, 47(4): 149-157. [16] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6410-6419. [17] HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11105-11114. [18] YE M, XU S, CAO T, et al. DRINet: a dual-representation iterative learning network for point cloud segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 7427-7436. [19] XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 5987-5995. [20] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [21] HORNIK K, STINCHCOMBE M B, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. [22] ARMENI I, SENER O, ZAMIR A, et al. 3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 1534-1543. [23] BEHLEY J, GARBADE M, MILIOTO A, et al. Semantic-KITTI: a dataset for semantic scene understanding of lidar sequences[C]//Proceedings of the 2020 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2020: 9297-9307. [24] ENGELMAN F, KONTOGIANNI T, HERRMANS A, et al. Exploring spatial context for 3D semantic segmentation of point clouds[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 716-724. [25] HUANG Q, WANG W, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 2626-2635. [26] LE E T, KOKKINOS I, MITAR N J. Going deeper with lean point networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9500-9509. [27] HE T, GONG D, TIAN Z, et al. Learning and memorizing representative prototypes for 3D point cloud semantic and instance segmentation[C]//Proceedings of the 16th European Conference on Computer Vision Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 564-580. [28] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 4558-4567. [29] LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on X-transformed points[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018. Cambridge: MIT Press, 2018: 828-838. [30] YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5589-5598. [31] XU C F, WU B C, WANG Z N, et al. SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 1-19. [32] 杨军, 李博赞. 基于自注意力特征融合组卷积神经网络的三维点云语义分割[J]. 光学精密工程, 2022, 30(7): 840-853. YANG J, LI B Z. Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network[J]. Optics and Precision Engineering, 2022, 30(7): 840-853. [33] SU H, JAMPANI V, SUN D, et al. SPLATNet: sparse lattice networks for point cloud processing[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 2530-2539. [34] WU B, ZHOU X, ZHAO S, et al. SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//Proceedings of the 2019 International Conference on Robotics and Automation, Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 4376-4382. [35] TATARCHENKO M, PARK J, KOLTUN V, et al. Tangent convolutions for dense prediction in 3D[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 3887-3896. [36] MILIOTO A, VIZZO I, BEHLEY J et al. RangeNet++: fast and accurate lidar semantic segmentation[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, Nov 3-8, 2019. Piscataway: IEEE, 2019: 4213-4220. [37] ZHANG Y, ZHOU Z, DAVID P, et al. PolarNet: an improved grid representation for online lidar point clouds semantic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9601-9610. [38] ALONSO I, RIAZUELO L, MONTESANO L, et al. 3D-MiniNet: learning a 2D representation from point clouds for fast and efficient 3D LIDAR semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5432-5439. |
[1] | MA Dongmei, LI Yueyuan, CHEN Xi. Lightweight Semi-Supervised Semantic Segmentation Algorithm Based on Dual-Polarization Self-Attention [J]. Computer Engineering and Applications, 2024, 60(8): 225-233. |
[2] | FANG Hong, LI Desheng, JIANG Guangjie. Efficient Cross-Domain Transformer Few-Shot Semantic Segmentation Network [J]. Computer Engineering and Applications, 2024, 60(4): 142-152. |
[3] | LI Qing, LI Haitao, LI Hui, ZHANG Junhu. Photovoltaic Panel Segmentation Using Attention Mechanism and Global Convolution [J]. Computer Engineering and Applications, 2024, 60(4): 237-248. |
[4] | WANG Yaowen, CHENG Junsheng, YANG Yu. Improved Semantic Segmentation Model and Its Application [J]. Computer Engineering and Applications, 2024, 60(2): 337-343. |
[5] | CUI Ke, TIAN Qichuan, LIAN Lu. Review of Medical Image Segmentation Algorithms Based on U-Net Variants [J]. Computer Engineering and Applications, 2024, 60(11): 32-49. |
[6] | WANG Yizhong, HU Yaqi, WU Xiaosuo, YAN Haowen, WANG Xiaocheng. Semantic Segmentation Method for Remote Sensing Images Based on Improved Swin Transformer [J]. Computer Engineering and Applications, 2024, 60(11): 194-203. |
[7] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[8] | TIAN Xuewei, WANG Jiali, CHEN Ming, DU Shouqing. Improved SegFormer Network Based Method for Semantic Segmentation of Remote Sensing Images [J]. Computer Engineering and Applications, 2023, 59(8): 217-226. |
[9] | LI Abiao, GUO Hao, QI Chang, AN Jubai. Dense Object Detection in Remote Sensing Images Under Complex Background [J]. Computer Engineering and Applications, 2023, 59(8): 247-253. |
[10] | YUN Fei, YIN Yanjun, ZHANG Wenxuan, ZHI Min. Adversarial Semi-Supervised Semantic Segmentation with Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(8): 254-262. |
[11] | HE Ruhan, XIONG Jiefan, XIONG Mingfu. Research on Person Re-Identification Based on Background Adaptive Learning [J]. Computer Engineering and Applications, 2023, 59(7): 126-133. |
[12] | LUO Penlin, FANG Yanhong, LI Xin, LI Xue. Dual-Modal Feature Fusion Semantic Segmentation of RGB-D [J]. Computer Engineering and Applications, 2023, 59(7): 222-231. |
[13] | YU Ying, WANG Chunping, FU Qiang, KOU Renke, WU Weiyi, LIU Tianyong. Survey of Evaluation Metrics and Methods for Semantic Segmentation [J]. Computer Engineering and Applications, 2023, 59(6): 57-69. |
[14] | ZHAO Xuebing, WANG Junjie. Bridge Crack Detection Based on Improved DeeplabV3+ and Migration Learning [J]. Computer Engineering and Applications, 2023, 59(5): 262-269. |
[15] | ZHANG Hao, HE Lingmin, PAN Chen. Improved SegFormer Remote Sensing Image Semantic Segmentation Network [J]. Computer Engineering and Applications, 2023, 59(24): 248-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||