Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (10): 1-15.DOI: 10.3778/j.issn.1002-8331.2308-0206
• Research Hotspots and Reviews • Previous Articles Next Articles
YU Junwei, GUO Yuansen, ZHANG Zihao, MU Yashuang
Online:
2024-05-15
Published:
2024-05-15
于俊伟,郭园森,张自豪,母亚双
YU Junwei, GUO Yuansen, ZHANG Zihao, MU Yashuang. Process of Weakly Supervised Salient Object Detection[J]. Computer Engineering and Applications, 2024, 60(10): 1-15.
于俊伟, 郭园森, 张自豪, 母亚双. 弱监督显著性目标检测研究进展[J]. 计算机工程与应用, 2024, 60(10): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2308-0206
[1] FAN D P, LI T P, LIN Z, et al. Re-thinking co-salient object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4339-4354. [2] UTRERA F, KRAVITZ E, ERICHSON N B, et al. Adversarially-trained deep nets transfer better: illustration on image classification[J]. arXiv:2007.05869, 2020. [3] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014. [4] LI G B, YU Y Z. Deep contrast learning for salient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 478-487. [5] DAI K N, ZHAO J, WANG L J, et al. Video annotation for visual tracking via selection and refinement[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 10296-10305. [6] 杨艳艳, 李雷孝, 林浩. 提取驾驶员面部特征的疲劳驾驶检测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1249-1267. YANG Y Y, LI L X, LIN H. Research review on fatigue driving detection based on facial features extraction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1249-1267. [7] BELHARBI S, AYED I B, MCCAFFREY L, et al. Deep active learning for joint classification & segmentation with weak annotator[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, 2021: 3337-3346. [8] HOOPER S, WORNOW M, SEAH Y H, et al. Cut out the annotator, keep the cutout: better segmentation with weak supervision[C]//Proceedings of the 9th International Conference on Learning Representations, 2020. [9] GOLUB D, MARTIN M R, EL K A, et al. Leveraging pretrained image classifiers for language-based segmentation[C]//Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 2010-2019. [10] ZHOU Q, YU C H, WANG Z B, et al. Instant-teaching: an end-to-end semi-supervised object detection framework[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4081-4090. [11] LI G B, XIE Y, LIN L. Weakly supervised salient object detection using image labels[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. [12] LI J J, JI W, BI Q, et al. Joint semantic mining for weakly supervised RGB-D salient object detection[C]//Advances in Neural Information Processing Systems 34, 2021: 11945-11959. [13] HE S F, JIAO J B, ZHANG X D, et al. Delving into salient object subitizing and detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 1059-1067. [14] ISLAM M A, KALASH M, BRUCE N D. Revisiting salient object detection: simultaneous detection, ranking, and subitizing of multiple salient objects[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7142-7150. [15] ZHENG X Y, TAN X, ZHOU J, et al. Weakly-supervised saliency detection via salient object subitizing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4370-4380. [16] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929. [17] BILEN H, VEDALDI A. Weakly supervised deep detection networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2846-2854. [18] CINBIS R G, VERBEEK J, SCHMID C. Weakly supervised object localization with multi-fold multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(1): 189-203. [19] TANG P, WANG X G, BAI X, et al. Multiple instance detection network with online instance classifier refinement[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2843-2851. [20] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 618-626. [21] WANG X G, FENG J P, HU B, et al. Weakly-supervised instance segmentation via class-agnostic learning with salient images[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10225-10235. [22] UNAL O, DAI D, VAN G L. Scribble-supervised lidar semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2697-2707. [23] PAN Z Y, JIANG P, WANG Y H, et al. Scribble-supervised semantic segmentation by uncertainty reduction on neural representation and self?supervision on neural eigenspace[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 7416-7425. [24] ZHANG J, YV X, LI A X, et al. Weakly-supervised salient object detection via scribble annotations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12546-12555. [25] YV S Y, ZHANG B F, XIAO J M, et al. Structure-consistent weakly supervised salient object detection with local saliency coherence[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 3234-3242. [26] HUANG Z, XIANG T Z, CHEN H X, et al. Scribble-based boundary-aware network for weakly supervised salient object detection in remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191: 290-301. [27] 姚洁茹, 韩军伟, 张鼎文. 一种基于点标注的弱监督目标检测方法[J]. 中国科学: 信息科学, 2022, 52(3): 461-482. YAO J R, HAN J W, ZHANG D W. A weakly supervised target detection method based on point annotation[J]. Science in China: Information Sciences, 2022, 52(3): 461-482. [28] GAO S Y, ZHANG W, WANG Y, et al. Weakly-supervised salient object detection using point supervision[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 670-678. [29] ZHAO M B, FENG W, YIN F, et al. Texts as points: scene text detection with point supervision[J]. Pattern Recognition Letters, 2023, 170: 1-8. [30] GAO X, XIONG Y J, ZHANG G Y, et al. Exploiting key points supervision and grouped feature fusion for multiview pedestrian detection[J]. Pattern Recognition, 2022, 131: 108866. [31] CAO L B, XIAO Z H, LIAO X H, et al. Automated chicken counting in surveillance camera environments based on the point supervision algorithm: LC-DenseFCN[J]. Agriculture, 2021, 11(6): 493. [32] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015: 234-241. [33] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [34] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890. [35] WASAY A, IDREOS S. More or less: when and how to build convolutional neural network ensembles[C]//Proceedings of the 2020 International Conference on Learning Representations, 2020. [36] PAD P, NARDUZZI S, KUNDIG C, et al. Efficient neural vision systems based on convolutional image acquisition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12285-12294. [37] JI H Q, LU W Z, SHEN L L. Backbone based feature enhancement for object detection[C]//Proceedings of the 15th Asian Conference on Computer Vision, 2020: 56-70. [38] HONG W X, LAO J W, REN W, et al. Training object detectors from scratch: an empirical study in the era of vision transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4662-4671. [39] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [40] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2961-2969. [41] GOWAL S, REBUFFI S A, WILES O, et al. Improving robustness using generated data[C]//Advances in Neural Information Processing Systems 34, 2021: 4218-4233. [42] GUPTA S K. Reinforcement based learning on classification task yields better generalization and adversarial accuracy (student abstract)[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 15793-15794. [43] SRIRAMANAN G, ADDEPALLI S, BABURAJ A. Towards efficient and effective adversarial training[C]//Advances in Neural Information Processing Systems 34, 2021: 11821-11833. [44] JIANG M, HUANG S S, DUAN J Y, et al. SALICON: saliency in context[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1072-1080. [45] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125. ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm for dual attention mechanism of channel separation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125. [46] KUMMERER M, WALLIS T S, BETHGE M. DeepGaze II: reading fixations from deep features trained on object recognition[J]. arXiv:1610.01563, 2016. [47] LIU N, HAN J W, YANG M H. PiCANet: learning pixel-wise contextual attention for saliency detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3089-3098. [48] PIAO Y R, JI W, LI J J, et al. Depth-induced multi-scale recurrent attention network for saliency detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 7254-7263. [49] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015. [50] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [51] YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3684-3692. [52] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. [53] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 801-818. [54] DURANG T, MORDAN T, THOME N, et al. WILDCAT: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 642-651. [55] ZHANG X L, WEI Y C, FENG J S, et al. Adversarial complementary learning for weakly supervised object localization[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1325-1334. [56] HUANG Z Y, ZOU Y, KUMAR B V, et al. Comprehensive attention self-distillation for weakly-supervised object detection[C]//Advances in Neural Information Processing Systems 33, 2020: 16797-16807. [57] ZHAO W B, ZHANG J, LI L, et al. Weakly supervised video salient object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16826-16835. [58] ZENG Y, ZHUGE Y Z, LU H C, et al. Multi-source weak supervision for saliency detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6074-6083. [59] PIAO Y R, WANG J, ZHANG M, et al. MFNet: multi-filter directive network for weakly supervised salient object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 4136-4145. [60] DABKOWSKI P, GAL Y. Real time image saliency for black box classifiers[C]//Advances in Neural Information Processing Systems 30, 2017. [61] CONG R M, QIN Q, ZHANG C, et al. A weakly supervised learning framework for salient object detection via hybrid labels[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 33(2): 534-548. [62] WANG Q, BAI S K, GAO J Y, et al. Unsupervised domain adaptive learning via synthetic data for person re-identification[J]. arXiv:2109.05542, 2021. [63] SINGH M, GUSTAFSON L, ADCOCK A, et al. Revisiting weakly supervised pre-training of visual perception models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 804-814. [64] RECASENS A, KELLNHOFER P, STENT S, et al. Learning to zoom: a saliency-based sampling layer for neural networks[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 51-66. [65] BOECKING B, ROBERTS N, NEISWANGER W, et al. Generative modeling helps weak supervision (and Vice Versa)[J]. arXiv:2203.12023, 2022. [66] LANG H, VIJAYARAGHAVAN A, SONTAG D. Training subset selection for weak supervision[C]//Advances in Neural Information Processing Systems 35, 2022: 16023-16036. [67] YAN Q, XU L, SHI J P, et al. Hierarchical saliency detection[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 1155-1162. [68] WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 136-145. [69] LI G B, YV Y Z. Visual saliency based on multiscale deep features[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5455-5463. [70] YANG C, ZHANG L H, LU H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 3166-3173. [71] LI Y, HOU X D, KOCH C, et al. The secrets of salient object segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 280-287. [72] BOLLIS E, PEDRINI H, AVILA S. Weakly supervised learning guided by activation mapping applied to a novel citrus pest benchmark[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 70-71. [73] BHUGRA S, KAUSHIK V, GUPTA A, et al. AnoLeaf: unsupervised leaf disease segmentation via structurally robust generative inpainting[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 6415-6424. [74] YAN C, YAO J, LI R, et al. Weakly supervised deep learning for thoracic disease classification and localization on chest X-rays[C]//Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 2018: 103-110. [75] WANG X, CHEN H, GAN C, et al. Weakly supervised deep learning for whole slide lung cancer image analysis[J]. IEEE Transactions on Cybernetics, 2019, 50(9): 3950-3962. [76] ZAHEER M Z, MAHMOOD A, ASTRID M, et al. CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection[C]//Proceedings of the 16th European Conference Computer Vision, Glasgow, Aug 23-28, 2020: 358-376. |
[1] | GAO Yue, DAI Meng, ZHANG Qing. RGB-D Salient Object Detection Based on Multi-Modal Feature Interaction [J]. Computer Engineering and Applications, 2024, 60(2): 211-220. |
[2] | YANG Xin, ZHU Hengliang, MAO Guojun. Dual-Stream Fusion and Edge-Aware Network for Salient Object Detection [J]. Computer Engineering and Applications, 2024, 60(10): 227-236. |
[3] | ZHANG Jianhe, JIANG Xiaoyan. Weakly Supervised Person Search Combining Dual-Path Network and Multi-Label Classification [J]. Computer Engineering and Applications, 2023, 59(9): 159-166. |
[4] | CHEN Hui, PENG Li. Multi-Level Fusion Supervised Saliency Object Detection Based on Global Response [J]. Computer Engineering and Applications, 2023, 59(24): 238-247. |
[5] | YANG Yongsheng, DENG Miaolei, LI Lei, ZHANG Dexian. Overview of Pedestrian Re-Identification Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(9): 51-66. |
[6] | LUAN Xiaomei, LIU Enhai, WU Pengfei, ZHANG Jun. Weakly-Supervised Semantic Segmentation Method of Remote Sensing Images Based on Edge Enhancement [J]. Computer Engineering and Applications, 2022, 58(20): 188-196. |
[7] | LIU Jianfeng, PAN Chen. Salient Object Detection for Enhanced Feature Pyramid Structure [J]. Computer Engineering and Applications, 2022, 58(12): 226-233. |
[8] | YUAN Mingyang, HUANG Hongbo, ZHOU Changsheng. Research Progress of Image Semantic Segmentation Based on Fully Supervised Learning [J]. Computer Engineering and Applications, 2021, 57(4): 43-54. |
[9] | YANG Hui, QUAN Jichuan, LIANG Xinyu, WANG Zhongwei. Research Progress of Object Detection Based on Weakly Supervised Learning [J]. Computer Engineering and Applications, 2021, 57(16): 40-49. |
[10] | XIANG Qian, TANG Jiting, WU Jianguo. Super Supervised RGBD Salient Object Detection with Multi-level Upsampling Fusion [J]. Computer Engineering and Applications, 2020, 56(19): 182-188. |
[11] | WANG Yingbo1, LIU Jian2. Salient Object Detection Method Based on Power Law Transformation and IGLC Algorithm [J]. Computer Engineering and Applications, 2019, 55(14): 168-176. |
[12] | ZHANG Qing1, LIN Jiajun2, DAI Meng1. Improved salient object detection based upon graph-based manifold ranking [J]. Computer Engineering and Applications, 2016, 52(22): 26-32. |
[13] | ZHANG Qing1, LIN Jiajun2, SHI Yanjiao1. Salient object detection based upon region contrast and background prior [J]. Computer Engineering and Applications, 2016, 52(21): 36-41. |
[14] | CHEN Yan1,2, GENG Guohua1, JIA Hui1,2. Density center graph based weakly supervised classification algorithm [J]. Computer Engineering and Applications, 2015, 51(6): 6-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||