[1] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[3] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer International Publishing, 2016: 21-37.
[6] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[7] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arXiv:2304.00501, 2023.
[8] 张蕊, 高诗博, 赵霞, 等. 基于改进YOLOv5s的无人驾驶夜间车辆目标检测算法[J]. 电子测量技术, 2023, 46(17): 87-93.
ZHANG R, GAO S B, ZHAO X, et al. Algorithm on nighttime target detection for unmanned vehicles based on an improved YOLOv5s[J]. Electronic Measurement Technology, 2023, 46(17): 87-93.
[9] KALWAR S, PATEL D, AANEGOLA A, et al. GDIP: gated differentiable image processing for object-detection in adverse conditions[J]. arXiv:2209.14922, 2022.
[10] QIN Q, CHANG K, HUANG M, et al. DENet: detection-driven enhancement network for object detection under adverse weather conditions[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 2813-2829.
[11] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[12] 麦锦文, 李浩, 康雁. 基于特征交互结构的弱光目标检测[J/OL]. 计算机工程与应用: 1-11[2023-10-10]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230403.1553.022.html.
MAI J W, LI H, KANG Y. Low-light object detection based on feature interaction structure[J/OL]. Computer Engineering and Applications: 1-11[2023-10-10]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230403.1553.022.html.
[13] 舒子婷, 张泽斌, 宋尧哲, 等. 基于改进YOLOv5的低光照图像目标检测[J]. 激光与光电子学进展, 2023, 60(4): 77-84.
SHU Z T, ZHANG Z B, SONG Y Z, et al. Low-light image object detection based on improved YOLOv5 algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(4): 77-84.
[14] 陈永麟, 王恒涛, 张上. 基于YOLO v7的轻量级红外目标检测算法[J/OL]. 红外技术: 1-9[2023-10-13]. http://kns.cnki.net/kcms/detail/53.1053.TN.20230911.1613.002.html.
CHEN Y L, WANG H T, ZHANG S. Lightweight infrared target detection algorithm based on YOLO v7[J/OL]. Infrared Technology: 1-9[2023-10-13]. http://kns.cnki.net/kcms/detail/53.1053.TN.20230911.1613.002.html.
[15] HU M, WANG S, LI B, et al. Penet: towards precise and efficient image guided depth completion[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13656-13662.
[16] SASAGAWA Y, NAGAHARA H. Yolo in the dark-domain adaptation method for merging multiple models[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, August 23-28, 2020. [S.l.]: Springer International Publishing, 2020: 345-359.
[17] YIN X, YU Z, GAO X, et al. DEFormer: DCT-driven enhancement transformer for low-light image and dark vision[J]. arXiv:2309.06941, 2023.
[18] ALI M, YIN B, BILAL H, et al. Advanced efficient strategy for detection of dark objects based on spiking network with multi-box detection[J]. Multimedia Tools and Applications, 2023: 1-21.
[19] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[21] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[22] LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42.
[23] LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1792-1800.
[24] WANG J, YANG P, LIU Y, et al. Research on improved yolov5 for low-light environment object detection[J]. Electronics, 2023, 12(14): 3089.
[25] GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1780-1789.
[26] LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10561-10570. |