[1] NGUYEN L V, HONG M S, JUNG J J, et al. Cognitive similarity-based collaborative filtering recommendation system[J]. Applied Sciences, 2020, 10(12): 4183.
[2] CHEN Y C, HUI L, THAIPISUTIKUL T. A collaborative filtering recommendation system with dynamic time decay[J]. The Journal of Supercomputing, 2021, 77(1): 244-262.
[3] REDDY S R S, NALLURI S, KUNISETTI S, et al. Content-based movie recommendation system using genre correlation[M]//Smart intelligent computing and applications. Singapore: Springer, 2019: 391-397.
[4] LOGESH R, SUBRAMANIYASWAMY V. Exploring hybrid recommender systems for personalized travel applications[M]//Cognitive informatics and soft computing. Singapore: Springer, 2019: 535-544.
[5] 谭台哲, 晏家斌. 基于注意力模型的混合推荐系统[J]. 计算机工程与应用, 2020, 56(13): 172-180.
TAN T Z, YAN J B. Hybrid recommendation system based on self-attention model[J]. Computer Engineering and Applications, 2020, 56(13): 172-180.
[6] WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 968-977.
[7] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 950-958.
[8] SONG W, DUAN Z, YANG Z, et al. Explainable knowledge graph-based recommendation via deep reinforcement Learning[J]. arXiv:1906.09506, 2019.
[9] SHI C, HU B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2): 357-370.
[10] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 417-426.
[11] WANG Y, SHEN Y, CREMERS D. Explicit pairwise factorized graph neural network for semi-supervised node classification[C]//Uncertainty in Artificial Intelligence, 2021: 1979-1987.
[12] LIU Z, WAN M, GUO S, et al. BasConv: aggregating heterogeneous interactions for basket recommendation with graph convolutional neural network[C]//Proceedings of the 2020 SIAM International Conference on Data Mining, 2020: 64-72.
[13] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 165-174.
[14] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 639-648.
[15] SHEN T, ZHANG F, CHENG J. A comprehensive overview of knowledge graph completion[J]. Knowledge-Based Systems, 2022: 109597.
[16] 田萱, 陈杭雪. 推荐任务中知识图谱嵌入应用研究综述[J]. 计算机科学与探索, 2022, 16(8): 1681-1705.
TIAN X, CHEN H X. Survey on applications of knowledge graph embedding in recommendation tasks[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705.
[17] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//The 27th International Conference on World Wide Web, 2018: 1835-1844.
[18] HUANG J, ZHAO W X, DOU H, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 505-514.
[19] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[20] SHA X, SUN Z, ZHANG J. Attentive knowledge graph embedding for personalized recommendation[J]. arXiv:1910.
08288, 2019.
[21] FENG Y, HU B, LV F, et al. ATBRG: adaptive target-behavior relational graph network for effective recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 2231-2240.
[22] ZHANG Z, ZHANG Y, REN Y. Employing neighborhood reduction for alleviating sparsity and cold start problems in user-based collaborative filtering[J]. Information Retrieval Journal, 2020, 23(4): 449-472.
[23] WANG Y, LIU Z, FAN Z, et al. DSKReG: differentiable sampling on knowledge graph for recommendation with relational GNN[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 3513-3517.
[24] JANG E, GU S, POOLE B. Categorical reparameterization with gumbel-softmax[J]. arXiv:1611.01144, 2016.
[25] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 353-362.
[26] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference, 2019: 3307-3313.
[27] WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 219-228.
[28] 王光, 石山山. 融合双端注意力网络的知识图谱推荐算法[J]. 计算机工程与应用, 2023, 59(19): 114-121.
WANG G, SHI S S. Knowledge graph recommendation algorithm integrating double-end attention network [J]. Computer Engineering and Applications , 2023, 59(19): 114-121. |