[1] LI J, FONG S, WONG R K, et al. Adaptive multi-objective swarm fusion for imbalanced data classification[J]. Information Fusion, 2018, 39: 1-24.
[2] LIU T, FAN W, WU C. A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset[J]. Artificial Intelligence in Medicine, 2019, 101: 101723.
[3] TANTITHAMTHAVORN C, HASSAN A E, MATSUM-OTO K. The impact of class rebalancing techniques on the performance and interpretation of defect prediction models[J]. IEEE Transactions on Software Engineering, 2018, 46(11): 1200-1219.
[4] LI Z, HUANG M, LIU G, et al. A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection[J]. Expert Systems with Applications, 2021, 175: 114750.
[5] 高雷阜, 张梦瑶, 赵世杰. 融合簇边界移动与自适应合成的混合采样算法[J]. 电子学报, 2022, 50(10): 2517-2529.
GAO L F, ZHANG M Y, ZHAO S J. Mixed-sampling algorithm combining cluster boundary movement and adaptive acta electronica sinica[J]. Acta Electronica Sinica, 2022, 50(10): 2517-2529.
[6] ZHU T, LIN Y, LIU Y. Improving interpolation-based over-
sampling for imbalanced data learning[J]. Knowledge-Based Systems, 2020, 187: 104826.
[7] 胡峰, 王蕾, 周耀. 基于三支决策的不平衡数据过采样方法[J]. 电子学报, 2018, 46(1): 135-144.
HU F, WANG L, ZHOU Y. An oversampling method for imbalance data based on three-way decision model[J]. Acta Electronica Sinica, 2018, 46(1): 135-144.
[8] 崔鑫, 徐华, 朱亮. 面向不均衡数据的多分类集成算法[J]. 计算机工程与应用, 2022, 58(2): 176-183.
CUI X, XU H, ZHU L. Multi-classification ensemble algorithm for imbalanced data[J]. Computer Engineering and Applications, 2022, 58(2): 176-183.
[9] 刘宁, 朱波, 阴艳超, 等. 一种混合CGAN与SMOTEENN的不平衡数据处理方法[J]. 控制与决策, 2023, 38(9): 2614-2621.
LIU N, ZHU B, YIN Y C, et al. An imbalanced data processing method based on hybrid CGAN and SMOTEENN[J]. Control and Decision, 2023, 38(9): 2614-2621.
[10] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[11] GOODFELLOW I J, POUGET A J, MIRZA M, et al. Generative adversarial networks[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
[12] FIORE U, DE SANTIS A, PERLA F, et al. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection[J]. Information Sciences, 2017, 479: 448-455.
[13] 陈俊丰, 郑中团. WKMeans与SMOTE结合的不平衡数据过采样方法[J]. 计算机工程与应用, 2021, 57(23): 106-112.
CHEN J F, ZHENG Z T. Over-sampling method on imbalanced data based on WKMeans and SMOTE[J]. Computer Engineering and Applications, 2021, 57(23): 106-112.
[14] WACHTER S, MITTELSTADT B, RUSSELL C. Counterfactual explanations without opening the black box: automated decisions and the GDPR[J]. Harvard Journal of Law & Technology, 2017, 31: 841.
[15] MOTHILAL R K, SHARMA A, TAN C. Explaining machine learning classifiers through diverse counterfactual explanations[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, January 27-30, 2020. New York: ACM, 2020: 607-617.
[16] RUSSEL C. Efficient search for diverse coherent explanations[C]//Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency, Atlanta, January 29-31, 2019. New York: ACM, 2019: 20-28.
[17] VAN LOOVEREN A, KLAISE J. Interpretable counterfactual explanations guided by prototypes[J]. arXiv:1907.02584,2019.
[18] KEANE M T, SMYTH B. Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI)[C]//28th International Conference on Case-Based Reasoning Research and Development, 2020: 163-178.
[19] 王明, 武文芳, 王大玲, 等. 生成链接树: 一种高数据真实性的反事实解释生成方法[J]. 计算机科学, 2022, 49(9): 33-40.
WANG M, WU W F, WANG D L, et al. Generative link tree: a counterfactual explanation generation approach with high datafidelity[J]. Computer Science, 2022, 49(9): 33-40.
[20] 马舒岑, 史建琦, 黄滟鸿, 等. 基于最小不满足核的随机森林局部解释性分析[J]. 软件学报, 2022, 33(7): 2447-2463.
MA S C, SHI J Q, HUANG Y H, et al. Minimal-unsatisfiable-core-driven local explainability analysis for random Forest[J]. Journal of Software, 2022, 33(7): 2447-2463.
[21] TEMRAZ M, KENNY E M, Ruelle E, et al. Handling climate change using counterfactuals: using counterfactuals in data augmentation to predict crop growth in an uncertain climate future[C]//29th International Conference on Case-Based Reasoning Research and Development, 2021: 216-231.
[22] 夏子芳, 于亚新, 王子腾, 等. 融合协同知识图谱与反事实推理的可解释推荐机制[J]. 计算机应用, 2023, 43(7): 2001-2009.
XIA Z F, YU Y X, WANG Z T, et al. Explainable recommendation mechanism by fusion collaborative knowledge graph and counterfactual[J]. Journal of Computer Applictions, 2023, 43(7): 2001-2009.
[23] TEMRAZ M, KEANE M T. Solving the class imbalance problem using a counterfactual method for data augmentation[J]. Machine Learning with Applications, 2022, 9: 100375.
[24] DELANEY E, GREENE D, KEANE M T. Instance-based counterfactual explanations for time series classification[C]//29th International Conference on Case-Based Reasoning Research and Development, 2021: 32-47.
[25] LAUGEL T, LESOT M J, MARSALA C. The dangers of post-hoc interpretability: unjustified counterfactual explanations[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 2801-2807.
[26] WILSON D R, MARTINEZ T R. Improved heterogeneous distance functions[J]. Journal of Artificial Intelligence Research, 1997, 6: 1-34.
[27] F?RSTER M, KLIER M, KLUGE K, et al. Fostering human agency: a process for the design of user-centric XAI systems[C]//Proceedings of the 41st International Conference on Information Systems, 2020.
[28] TAO X, LI Q, GUO W, et al. Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification[J]. Information Sciences, 2019, 487: 31-56.
[29] GONZALEZ-ABRIL L, NUNEZ H, ANGULO C, et al. GSVM: an SVM for handling imbalanced accuracy between classes inbi-classification problems[J]. Applied Soft Computing, 2014, 17: 23-31.
[30] 吴艺凡, 梁吉业, 王俊红. 基于混合采样的非平衡数据分类算法[J]. 计算机科学与探索, 2019, 13(2): 342-349.
WU Y F, LIANG J Y, WANG J H. Classification algorithm based on hybrid sampling for unbalanced data[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(2): 342-349.
[31] 马汉达, 朱敏. 改进SVM不平衡数据分类的IGWOSMO-TE方法[J]. 计算机工程与科学, 2022, 44(6): 1133-1140.
MA H D, ZHU M. IGWOSMO-TE: an over sampling method based on improved gray wolf algorithm fol SVM imbalanced data classification[J]. Computer Engineering & Science, 2022, 44(6): 1133-1140.
[32] KORKMAZ S, SAHMAN M A, CINAR A C, et al. Boosting the oversampling methods based on differential evolution strategies for imbalanced learning[J]. Applied Soft Computing, 2021, 112: 107787.
[33] 黎旭, 陈家兑, 吴永明, 等. 基于改进SMOTE的制造过程不平衡数据分类策略[J]. 计算机工程与应用, 2022, 58(16): 284-291.
LI X, CHEN J D, WU Y M, et al. Classification strategy of imbalanced data in manufacturing process based on improved SMOTE[J]. Computer Engineering and Applications, 2022, 58(16): 284-291.
[35] 王泳欣, 张大斌, 车大庆, 等. 面向不平衡数据集分类的LDBSMOTE过采样方法[J]. 统计与决策, 2022, 38(18): 58-63.
WANG Y X, ZHANG D B, CHE D Q, et al. LDBSMOTE oversampling method for imbalanced data sets classification[J]. Statistics & Decision, 2022, 38(18): 58-63. |