Improved YOLOv7 Algorithm for Small Sample Steel Plate Surface Defect Detection
DOU Zhi, HU Chenguang, LI Qinghua, ZHENG Liming
1.School of Computer and Information Engineering, Henan Normal University, Xinxiang,Henan 453007, China
2.Laiwu Iron and Steel Group Yinshan Section Steel Co., Ltd., Jinan 271104, China
3.School of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing 211169, China
[1] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Computer Vision-ECCV 2016 Lecture Notes in Computer Science,2016:21-37.
[2] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of CVPR,2017:6517-6525.
[3] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39:1137-1149.
[4] DAI J F,LI Y,HE K M,et al.R-FCN:object detection via region-based fully convolutional networks[C]//30th Conference on Neural Information Processing Systems (NIPS 2016),Barcelona,Spain,2016:379-387.
[5] LI J,SU Z,GENG J,et al.Real-time detection of steel strip surface defects based on improved YOLO detection network[J].IFAC-Papers OnLine,2018,51(21):76-81.
[6] ZHANG C,CHANG C,JAMSHIDI M.Concrete bridge surface damage detection using a single-stage detector[J].Computer-Aided Civil and Infrastructure Engineering,2020,35(4):389-409.
[7] REDMON J,FARHADI A.YOlOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[8] CHEN S H,TSAI C C.SMD LED chips defect detection using a YOLOv3-dense model[J].Advanced Engineering Informatics,2021,47:101255.
[9] HUANG G,LIU Z,VAN DER MAATENL,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
[10] 曹义亲,伍铭林,徐露.基于改进YOLOv5算法的钢材表面缺陷检测[J].图学学报,2023,44(2):335-345.
CAO Y Q,WU M L,XU L.Steel surface defect detection based on improved YOLOv5 algorithm[J].Journal of Graphics,2023,44(2):335-345.
[11] WANG C Y,BOCHKOVSKJY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2023:7464-7475.
[12] ZHANG H,WU Q M J.Pattern recognition by affine Legendre moment invariants[C]//2011 18th IEEE International Conference on Image Processing,2011:797-800.
[13] NAIR V,HINTON G E.Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning(ICML-10),2010:807-814.
[14] DWIBEDI D,MISRA I,HEBERT M.Cut,paste and learn:surprisingly easy synthesis for instance detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1301-1310.
[15] TRAN T,PHAM T,CARNEIRO G,et al.A Bayesian data augmentation approach for learning deep models[C]//Advances in Neural Information Processing Systems,2017.
[16] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems,2014.
[17] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014.
[18] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232.
[19] KARRAS T,LAINE S,AILA T.A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4401-4410.
[20] KARRAS T,LAINE S,AITTALA M,et al.Analyzing and improving the image quality of styleGAN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:8110-8119.
[21] WANG C Y,YEH I H,LIAO H Y M.You only learn one representation:unified network for multiple tasks[J].arXiv:2105.04206,2021.
[22] GE Z,LIU S,WANG F,et al.YOLOx:exceeding YOLO series in 2021[J].arXiv:2107.08430,2021.
[23] XU S,WANG X,LV W,et al.PP-YOLOE:an evolved version of YOLO[J].arXiv:2203.16250,2022.
[24] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[25] DAI Z,LIU H,LE Q V,et al.Coatnet:marrying convolution and attention for all data sizes[C]//Advances in Neural Information Processing Systems,2021:3965-3977.
[26] PAN X,GE C,LU R,et al.On the integration of self-attention and convolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:815-825.
[27] TONG Z,CHEN Y,XU Z,et al.Wise-IoU:bounding box regression loss with dynamic focusing mechanism[J].arXiv:2301.10051,2023.