Improved Road Damage Detection Algorithm of YOLOv8
LI Song, SHI Tao, JING Fangke
1.School of Electrical Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China
2.School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
[1] 初秀民,严新平,陈先桥.路面破损图像二值化方法研究[J].计算机工程与应用,2008,44(28):161-165.
CHU X M,YAN X P,CHEN X Q.Study of pavement surface distress image binarization[J].Computer Engineering and Applications,2008,44(28):161-165.
[2] 韩锟,韩洪飞.基于区域级和像素级特征的路面裂缝检测方法[J].铁道科学与工程学报,2018,15(5):1178-1186.
HAN K,HAN H F.Pavement crack detection method based on region-level and pixel-level features[J].Journal of Railway Science and Engineering,2018,15(5):1178-1186.
[3] KANG D,BENIPAL S S,GOPAL D L,et al.Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J].Automation in Construction,2020,118:103291.
[4] YAMAGUCHI T,MIZUTANI T.Quantitative road crack evaluation by a U-Net architecture using smartphone images and Lidar data[J].Computer-Aided Civil and Infrastructure Engineering,2022:13071.
[5] 李科岑,王晓强,林浩,等.深度学习中的单阶段小目标检测方法综述[J].计算机科学与探索,2022,16(1):41-58.
LI K C,WANG X Q,LIN H,et al.Survey of one-stage small object detection methods in deep learning[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):41-58.
[6] 黄凯枫,张博熠,王梦,等.基于改进SSD模型的路面病害识别算法研究[J].江苏科技大学学报(自然科学版),2023,37(2):53-60.
HUANG K F,ZHANG B Y,WANG M,et al.Research on pavement disease recognition algorithm based on improved SSD model[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2023,37(2):53-60.
[7] 安学刚,党建武,王阳萍,等.基于改进YOLOv4的无人机影像路面病害检测方法[J].无线电工程,2023,53(6):1285-1294.
AN X G,DANG J W,WANG Y P,et al.UAV image pavement disease detection based on improved YOLOv4[J].Radio Engineering,2023,53(6):1285-1294.
[8] YU G,ZHOU X L.An improved YOLOv5 crack detection method combined with a bottleneck Transformer[J].Mathematics,2023,11(10):2377.
[9] 倪昌双,李林,罗文婷,等.改进YOLOv7的沥青路面病害检测[J].计算机工程与应用,2023,59(13):305-316.
NI C S,LI L,LUO W T,et al.Disease detection of asphalt pavement based on improved YOLOv7[J].Computer Engineering and Applications,2023,59(13):305-316.
[10] SRINIVAS A,LIN T Y.Bottleneck Transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:16519-16529.
[11] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722.
[12] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
[13] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[14] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271.
[15] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[16] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[17] 王鹏飞,黄汉明,王梦琪.改进YOLOv5的复杂道路目标检测算法[J].计算机工程与应用,2022,58(17):81-92.
WANG P F,HUANG H M,WANG M Q.Complex road target detection algorithm based on improved YOLOv5[J].Computer Engineering and Applications,2022,58(17):81-92.
[18] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2023:7464-7475.
[19] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020.
[20] ARYA D,MAEDA H,GHOSH S K,et al.Crowdsensing-based road damage detection challenge(CRDDC’2022)[C]//2022 IEEE International Conference on Big Data(Big Data),2022:6378-6386.