Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (23): 28-47.DOI: 10.3778/j.issn.1002-8331.2303-0401
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Li, GONG Yong, ZHAO Guoqiang
Online:
2023-12-01
Published:
2023-12-01
刘力,龚勇,赵国强
LIU Li, GONG Yong, ZHAO Guoqiang. Research Progress in Three-Dimensional Face Recognition[J]. Computer Engineering and Applications, 2023, 59(23): 28-47.
刘力, 龚勇, 赵国强. 三维人脸识别研究进展[J]. 计算机工程与应用, 2023, 59(23): 28-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2303-0401
[1] MINAEE S,ABDOLRASHIDI A,SU H,et al.Biometrics recognition using deep learning:a survey[J].Artificial Intelligence Review,2023,56(8):8647-8695. [2] KORTLI Y,JRIDI M,FALOU A A,et al.Face recognition systems:a survey[J].Sensors,2020,20(2):342. [3] WANG X,PENG J,ZHANG S,et al.A survey of face recognition[J].arXiv:2212.13038,2022. [4] DALVI J,BAFNA S,BAGARIA D,et al.A survey on face recognition systems[J].arXiv:2201.02991,2022. [5] DU H,SHI H,ZENG D,et al.The elements of end-to-end deep face recognition:a survey of recent advances[J].ACM Computing Surveys,2022,54(10S):1-42. [6] ZHOU S,XIAO S.3D face recognition:a survey[J].Human-centric Computing and Information Sciences,2018,8(1):1-27. [7] GUO G,ZHANG N.A survey on deep learning based face recognition[J].Computer Vision and Image Understanding,2019,189:102805. [8] SHARMA S,KUMAR V.3D face reconstruction in deep learning era:a survey[J].Archives of Computational Methods in Engineering,2022,29(5):3475-3507. [9] ZHANG J,LUXIMON Y,SHAH P,et al.3D statistical head modeling for face/head-related product design:a state-of-the-art review[J].Computer-Aided Design,2023,159:103483. [10] TOPSAKAL O,AKINCI T C,MURPHY J,et al.Detecting facial landmarks on 3D models based on geometric properties-A review of algorithms,enhancements,additions and open-source implementations[J].IEEE Access,2023,11:25593-25603. [11] MAURIZIO LA CAVA S,ORRù G,GOLDMANN T,et al.3D face reconstruction for forensic recognition-A survey[C]//Proceedings of the 26th International Conference on Pattern Recognition,Montréal,Aug 21-25,2022.Piscataway:IEEE,2022:930-937. [12] WANG T,ZHANG K,CHEN X,et al.A survey of deep face restoration:denoise,super-resolution,deblur,artifact removal[J].arXiv:2211.02831,2022. [13] JING Y,LU X,GAO S.3D face recognition:a survey[J].arXiv:2108.11082,2021. [14] KITTLER J,HILTON A,HAMOUZ M,et al.3D assisted face recognition:a survey of 3D imaging,modelling and recognition approachest[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,Sep 21-23,2005.Piscataway:IEEE,2005:114-120. [15] COLOMBO A,CUSANO C,SCHETTINI R.UMB-DB:a database of partially occluded 3D faces[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops,Barcelona,Nov 6-13,2011.Piscataway:IEEE,2011:2113-2119. [16] GAFNI G,THIES J,ZOLLHOFER,et al.Dynamic neural radiance fields for monocular 4D facial avatar reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:8649-8658. [17] HAN P,CAI Y,LIU F,et al.Computational polarization 3D:new solution for monocular shape recovery in natural conditions[J].Optics and Lasers in Engineering,2022,151:106925. [18] MALLIKARJUN B R,TEWARI A,OH T,et al.Monocular reconstruction of neural face reflectance fields[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:4791-4800. [19] BAI Z,CUI Z,LIU X,et al.Riggable 3D face reconstruction via in network optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:6216-6225. [20] DIB A,THEBAULT C,AHN J,et al.Towards high fidelity monocular face reconstruction with rich reflectance using self-supervised learning and ray tracing[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Montreal,Oct 11-17,2021.Piscataway:IEEE,2021:12819-12829. [21] WU S,RUPPRECHT C,VEDALDI A.Unsupervised learning of probably symmetric deformable 3D objects from images in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,Jun 16?18,2020.Piscataway:IEEE,2020:1-10. [22] ZHANG Z,GE Y,TAI Y,et al.Physically-guided disentangled implicit rendering for 3D face modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,Jun 21-24,2022.Piscataway:IEEE,2022:20353-20363. [23] WEN Y,LIU W,RAJ B,et al.Self-supervised 3D face reconstruction via conditional estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Montreal,Oct 11-17,2021.Piscataway:IEEE,2021:13289-13298. [24] JIANG D,JIN Y,ZHANG F L,et al.Sphere face model:a 3D morphable model with hypersphere manifold latent space using joint 2D/3D training[J].Computational Visual Media,2023,9(2):279-296. [25] BLANZ V,VETTER T.Face recognition based on fitting a 3D morphable model[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1063-1074. [26] EGGER B,SMITH W A P,TEWARI A,et al.3D morphable face models—past,present,and future[J].ACM Transactions on Graphics,2020,39(5):1-38. [27] TRAN L,LIU X.Nonlinear 3D face morphable model[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,Jun 18-22,2018.Piscataway:IEEE,2018:7346-7355. [28] JIN Y,LI Q,JIANG D,et al.High fidelity 3D face reconstruction with multi-scale details[J].Pattern Recognition Letters,2022,153:51-58. [29] WU C,XU Q,NEUMANN U.Synergy between 3DMM and 3D landmarks for accurate 3D facial geometry[C]//Proceedings of the 2021 International Conference on 3D Vision,London,Dec 1-3,2021.Piscataway:IEEE,2021:453-463. [30] YANG H,ZHU H,WANG Y,et al.Facescape:a large-scale high quality 3D face dataset and detailed riggable 3D face prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,Jun 16-18,2020.Piscataway:IEEE,2020:601-610. [31] TIWARI H,SUBRAMANIAN V K.Reduced dependency fast unsupervised 3D face reconstruction[C]//Proceedings of the 29th IEEE International Conference on Image Processing,Bordeaux,Oct 16-19,2022.Piscataway:IEEE,2022:1021-1025. [32] ZHANG Z,GE Y,CHEN R,et al.Learning to aggregate and personalize 3D face from in-the-wild photo collection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:14214-14224. [33] GENOVA K,COLE F,MASCHINOT A,et al.Unsupervised training for 3D morphable model regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,Jun 18-22,2018.Piscataway:IEEE,2018:8377-8386. [34] TIWARI H,CHEN M,TSAI Y,et al.Self-supervised robustifying guidance for monocular 3D face reconstruction[J].arXiv:2112.14382,2021. [35] SHANG J,SHEN T,LI S.Self-supervised monocular 3D face reconstruction by occlusion-aware multi-view geometry consistency[C]//Proceedings of the European Conference on Computer Vision,Glasgow,Aug 23-28,2020.Cham:Springer,2020:53-70. [36] DENG Y,YANG J,XU S,et al.Accurate 3D face reconstruction with weakly-supervised learning:from single image to image set[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,Long Beach,Jun 16?20,2019.Piscataway:IEEE,2019:0-0. [37] TRAN L,LIU X.On learning 3D face morphable model from in-the-wild images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,43(1):157-171. [38] JIN B,CRUZ L,GONCALVES N.Pseudo RGB-D face recognition[J].IEEE Sensors Journal,2022,22(22):21780-21794. [39] CHIU M,CHENG H,WANG C,et al.High-accuracy RGB-D face recognition via segmentation-aware face depth estimation and mask-guided attention network[C]//Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition,Jodhpur,Dec 15-18,2021.Piscataway:IEEE,2021:1-8. [40] TEWARI A,PAN X,FRIED O,et al.Disentangled3D:Learning a 3D generative model with disentangled geometry and appearance from monocular images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,Jun 21-24,2022.Piscataway:IEEE,2022:1516-1525. [41] XU W,XIE X,LAI J.RelightGAN:instance-level generative adversarial network for face illumination transfer[J].IEEE Transactions on Image Processing,2021,30:3450-3460. [42] WANG C,PENG C.3D face point cloud reconstruction and recognition using depth sensor[J].Sensors,2021,21(8):2587-2612. [43] NASSIH B,AMINE A,NGADI M,et al.An efficient three-dimensional face recognition system based random forest and geodesic curves[J].Computational Geometry,2021,97:101758-101765. [44] ZHANG Z,DA F,YU Y.Data-free point cloud network for 3D face recognition[J].arXiv:1911.04731,2019. [45] ATIK M E,DURAN Z.Deep learning-based 3D face recognition using derived features from point cloud[C]//Proceedings of the 5th International Conference on Smart City Applications,Karabuk,Oct 7-9,2020.Cham:Springer,2021:797-808. [46] MOSCHOGLOU S,PLOUMPIS S,NICOLAOU M A,et al.3DFaceGAN:adversarial nets for 3D face representation,generation,and translation[J].International Journal of Computer Vision,2020,128(10):2534-2551. [47] BHOPLE A,SHRIVASTAVA A M,PRAKASH S.Point cloud based deep convolutional neural network for 3D face recognition[J].Multimedia Tools and Applications,2021,80:30237-30259. [48] WANG Q,QIAN W Z,LEI H,et al.Siamese neural Pointnet:3D face verification under pose interference and partial occlusion[J].Electronics,2023,12(3):620-636. [49] BHOPLE A R,PRAKASH S.Learning similarity and dissimilarity in 3D faces with triplet network[J].Multimedia Tools and Applications,2021,80:35973-35991. [50] ZOU H,SUN X.3D face recognition based on an attention mechanism and sparse loss function[J].Electronics,2021,10:2539-2552. [51] BAHRI M,SULLIVAN E O,GONG S,et al.Shape my face:registering 3D face scans by surface-to-surface translation[J].International Journal of Computer Vision,2021,129(9):2680-2713. [52] CAI X,CAO Y,REN Y,et al.Multi-objective evolutionary 3D face reconstruction based on improved encoder-decoder network[J].Information Sciences,2021,581:233-248. [53] CHANG Y,JUNG C,XU Y.FinerPCN:high fidelity point cloud completion network using pointwise convolution[J].Neurocomputing,2021,460:266-276. [54] GAO G,YANG H,LIU H.3D point cloud face recognition based on deep learning[J].Journal of Computer Applications,2021,41(9):2736-2740. [55] YU C,ZHANG Z,LI H,et al.Meta-learning-based adversarial training for deep 3D face recognition on point clouds[J].Pattern Recognition,2023,134:109065-109075. [56] LUO C,ZHANG J,BAO C,et al.Robust 3D face modeling and tracking from RGB-D images[J].Multimedia Systems,2022,28:1657-1666. [57] ZHU X,YANG F,HUANG D,et al.Beyond 3DMM space:Towards ne-grained 3D face reconstruction[C]//Proceedings of the 16th European Conference on Computer Vision,Glasgow,Aug 23-28,2020.Cham:Springer,2020:343-358. [58] LI P,PEI Y,ZHONG Y,et al.Robust 3D face reconstruction from single noisy depth image through semantic consistency[J].IET Computer Vision,2021,15(6):393-404. [59] ZHONG Y,PEI Y,LI P,et al.Face denoising and 3D reconstruction from a single depth image[C]//Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition,Buenos Aires,May 18-22,2020.Piscataway:IEEE,2020:117-124. [60] DUTTA K,BHATTACHARJEE D,NASIPURI M,et al.Complement component face space for 3D face recognition from range images[J].Applied Intelligence,2021,51(4):2500-2517. [61] BOUMEDINE A Y,BENTAIEB S,OUAMRI A.3D face identification based on normal maps[C]//Proceedings of the International Conference on Advances in Communication Technology,Computing and Engineering,Meknes,Jun 24-25,2022.Amsterdam:Elsevier,2022:260-269. [62] SUI M,ZHU Z,ZHAO F,et al.FFNet-M:feature fusion network with masks for multi-modal facial expression recognition[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo,Shenzhen,Jul 5-9,2021.Piscataway:IEEE,2021:1-6. [63] WANG L,CHEN Z,YU T,et al.Faceverse:a fine-grained and detail-controllable 3D face morphable model from a hybrid dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,Jun 21-24,2022.Piscataway:IEEE,2022:20333-20342. [64] DUTTA K,BHATTACHARJEE D,NASIPURI M.SpPCANet:a simple deep learning-based feature extraction approach for 3D face recognition[J].Multimedia Tools and Applications,2020,79:31329-31352. [65] LIN S,JIANG C,LIU F,et al.High quality facial data synthesis and fusion for 3D low-quality face recognition[C]//Proceedings of the 2021 IEEE International Joint Conference on Biometrics,Shenzhen,Aug 4?7,2021.Piscataway:IEEE,2021:1-8. [66] UPPAL H.Attention and depth hallucination for RGB-D face recognition with deep learning[D].Kingston:Queen’s University,2021. [67] CHIU M T,CHENG H Y,WANG C Y,et al.RGB-D face recognition with identity-style disentanglement and depth augmentation[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2023,5(3):334-347. [68] JIANG L,ZHANG J,LI C,et al.RGB-D face recognition via spatial and channel attentions[C]//Proceedings of the 2021 IEEE 5th Advanced Information Technology,Electronic and Automation Control Conference,Chongqing,Mar 12-14,2021.Piscataway:IEEE,2021:2037-2041. [69] ZHU Y,GAO J,WU T,et al.Exploiting enhanced and robust RGB-D face representation via progressive multi-modal learning[J].Pattern Recognition Letters,2023,166:38-45. [70] NETO J B C,FERRARI C,MARANA A N,et al.Learning streamed attention network from descriptor images for cross-resolution 3D face recognition[J].ACM Transactions on Multimedia Computing,Communications and Applications,2023,19(1S):1-20. [71] UPPAL H,MOGHADDAM A S,GREENSPAN M,et al.Two-level attention-based fusion learning for RGB-D face recognition[C]//Proceedings of the 25th International Conference on Pattern Recognition,Milan,Jan 10?15,2021.Piscataway:IEEE,2021:10120-10127. [72] ZHANG F,LIU N,CHANG L,et al.Edge-guided single facial depth map super-resolution using CNN[J].IET Image Processing,2020,14(17):4708-4716. [73] LEE J,BHATTARAI B,KIM T.Face parsing from RGB and depth using cross- domain mutual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:1501-1510. [74] GHOSH S,SINGH R,VATSA M,et al.RGB-D face recognition using reconstruction based shared representation[C]//Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition,Jodhpur,Dec 15-18,2021.Piscataway:IEEE,2021:1-8. [75] ZHAO P,MING Y,MENG X,et al.LMFNet:a lightweight multiscale fusion network with hierarchical structure for low-quality 3D face recognition[J].IEEE Transactions on Human-Machine Systems,2022,53(1):239-252 [76] ZHENG H,WANG W,WEN F,et al.A complementary fusion strategy for RGB-D face recognition[C]//Proceedings of the 28th International Conference on Multimedia Modeling,Qui Nhon,Jun 6?10,2022.Cham:Springer,2022:339-351. [77] LI H,SUI M,ZHU Z,et al.MFEVit:a robust lightweight transformer-based network for multi-modal 2D+3D facial expression recognition[J].arXiv:2109.13086,2021. [78] XIAO M,YI H,HUANG Y,et al.Effective key region-guided face detail optimization algorithm for 3D face reconstruction[J].Journal of Sensors,2022,2022:1-13. [79] PETKOVA R,MANOLOVA A,TONCHEV K,et al.3D face reconstruction and verification using multi-view RGB-D data[C]//Proceedings of the 2022 Global Conference on Wireless and Optical Technologies,Malaga,Feb 14-17,2022.Piscataway:IEEE,2022:1-6. [80] JIANG L,ZHANG J,DENG B.Robust RGB-D face recognition using attribute-aware loss[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(10):2552-2566. [81] SINGH J M,RAMACHANDRA R.3D face morphing attacks:generation,vulnerability and detection[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2023:1-15.doi:10.1109/TBIOM.2023.3324684. [82] GU Y,YAN H,ZHANG X,et al.3D facial expression recognition via attention-based multichannel data fusion network[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-10. [83] DEVI P R,BASKARAN R.SL2E-AFRE:personalized 3D face reconstruction using autoencoder with simultaneous subspace learning and landmark estimation[J].Applied Intelligence,2021,51(4):2253-2268. [84] XIAO Q,WU Y,WANG D,et al.Beauty3DFaceNet:deep geometry and texture fusion for 3D facial attractiveness prediction[J].Computers and Graphics,2021,98:11-18. [85] TENG W,BAI C.Unimodal face classification with multi-modal training[C]//Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition,Jodhpur,Dec 15-18,2021.Piscataway:IEEE,2021:1-5. [86] NIU W,ZHAO Y,YU Z,et al.Research on a face recognition algorithm based on 3D face data and 2D face image matching[J].Journal of Visual Communication and Image Representation,2023,91:103757-103767. [87] GUO Y,CAI L,ZHANG J.3D face from X:learning face shape from diverse sources[J].IEEE Transactions on Image Processing,2021,30:3815-3827. [88] YANG H,ZHU K,HUANG D,et al.Intensity enhancement via GAN for multi-modal face expression recognition[J].Neurocomputing,2021,454:124-134. [89] SUI M,LI H,ZHU Z,et al.AFNet-M:adaptive fusion network with masks for 2D+3D facial expression recognition[C]//Proceedings of the 30th IEEE International Conference on Image Processing,Kuala Lumpur,Oct 8-11,2023.Piscataway:IEEE,2023:116-120. [90] TALAB M A,QAHRAMAN N A,AFTAN M M,et al.Local feature methods based facial recognition[C]//Proceedings of the 2022 International Congress on Human-Computer Interaction,Optimization and Robotic Applications,Ankara,Jun 9-11,2022.Piscataway:IEEE,2022:1-5. [91] LIU F,ZHAO Q,LIU X,et al.Joint face alignment and 3D face reconstruction with application to face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(3):664-678. [92] THAREWAL S,MALCHE T,TIWARI P K,et al.Score-level fusion of 3D face and 3D ear for multimodal biometric human recognition[J].Computational Intelligence and Neuroscience,2022,2022:1-9. [93] FANG H S,XIE S Q,TAI Y W,et al.RMPE:regional multi-person pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice,Oct 22-29,2017.Piscataway:IEEE,2017:2334-2343. [94] KREISS S,BERTONI L,ALAHI A.Openpifpaf:composite fields for semantic key-point detection and spatio-temporal association[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(8):13498-13511. [95] CHEN Q,GE T,XU Y,et al.Semantic human matting[C]//Proceedings of the 26th ACM International Conference on Multimedia,Seoul,Oct 22-26,2018.New York:ACM,2018:618-626. [96] ZHAO J,LI J,CHENG Y,et al.Understanding humans in crowded scenes:deep nested adversarial learning and a new benchmark for multi-human parsing[C]//Proceedings of the 26th ACM International Conference on Multimedia,Seoul,Oct 22-26,2018.New York:ACM,2018:792-800. [97] SHARMA S,KUMAR V.Voxel-based 3D face reconstruction and its application to face recognition using sequential deep learning[J].Multimedia Tools and Applications,2020,79:17303-17330. [98] SHARMA S,KUMAR V.Voxel-based 3D occlusion-invariant face recognition using game theory and simulated annealing[J].Multimedia Tools and Applications,2020,79:26517-26547. [99] SHARMA S,KUMAR V.3D landmark-based face restoration for recognition using variational autoencoder and triplet loss[J].IET Biometrics,2021,10(1):87-98. [100] YI D,LEI Z,LIAO S,et al.Learning face representation from scratch[J].arXiv:1411.7923,2014. [101] SENGUPTA S,CHEN J,CASTILLO C,et al.Frontal to profile face verification in the wild[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision,Lake Placid,Mar 7-10,2016.Piscataway:IEEE,2016:1-9. [102] KUMAR N,BERG A C,BELHUMEUR P N,et al.Attribute and simile classifiers for face verification[C]//Proceedings of the 12th IEEE International Conference on Computer Vision,Kyoto,Sep 29-Oct 2,2009.Piscataway:IEEE,2009:365-372. [103] GAO W,CAO B,SHAN S,et al.The CAS-PEAL large-scale Chinese face database and baseline evaluations[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2007,38(1):149-161. [104] ZHU Z,HUANG G,DENG J,et al.Webface260m:a benchmark unveiling the power of million-scale deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:10492-10502. [105] HUANG G B,LEARNED-MILLER G.Labeled faces in the wild:updates and new reporting procedures[R].University of Massachusetts,2014:1-5. [106] YANG S,LUO P,LOY C C,et al.Wider face:a face detection benchmark[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016.Piscataway:IEEE,2016:5525-5533. [107] KLARE B F,KLEIN B,TABORSKY E,et al.Pushing the frontiers of unconstrained face detection and recognition:IARPA Janus Benchmark A[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Boston,Jun 7-12,2015.Piscataway:IEEE,2015:1931-1939. [108] LIU Z,LUO P,WANG X,et al.Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision,Santiago,Dec 7-13,2015.Piscataway:IEEE,2015:3730-3738. [109] KOESTINGER M,WOHLHART P,ROTH P M,et al.Annotated facial landmarks in the wild:a large-scale,real-world database for facial landmark localization[C]//Proceedings of the IEEE International Conference on Computer Vision,Barcelona,Nov 6-13,2011.Piscataway:IEEE,2011:2144-2151. [110] 言有三.深度学习之人脸图像处理[M].北京:机械工业出版社,2020:145-162. YAN Y S.Deep learning for face image processing[M].Beijing:China Machine Press,2020:145-162. [111] BELHUMEUR P N,JACOBS D W,KRIEGMAN D J,et al.Localizing parts of faces using a consensus of exemplars[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(12):2930-2940. [112] LE V,BRANDT J,LIN Z,et al.Interactive facial feature localization[C]//Proceedings of the 12th European Conference on Computer Vision,Florence,Oct 7-13,2012.Cham:Springer,2012:679-692. [113] ZHANG Y,GUO Z,LIN Z,et al.The NPU multi-case Chinese 3D face database and information processing[J].Chinese Journal of Electronics,2012,21(2):283-286. [114] MORENO A.GavabDB:a 3D face database[C]//Proceedings of the 2nd COST275 Workshop on Biometrics on the Internet,Vigo,Mar 25-26,2004.Luxembourg:EU Publications Office,2004:75-80. [115] VELTKAMP R C,DRIRA H,AMOR B B,et al.SHREC’11 track:3D face models retrieval[C]//Proceedings of the 4th Eurographics Workshop on 3D Object Retrieval,Wales,Apr 10,2011.Goslar:Eurographics Association Postfach,2011:89-95. [116] BAGDANOV A D,DEL BIMBO A,MASI I.The Florence 2D/3D hybrid face dataset[C]//Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding,Scottsdale,Nov 28-Dec 1,2011.New York:Association for Computing Machinery,2011:79-80. [117] HESELTINE T,PEARS N,AUSTIN J.Three-dimensional face recognition using combinations of surface feature map subspace components[J].Image and Vision Computing,2008,26(3):382-396. [118] YIN B,SUN Y,WANG C,et al.BJUT-3D large scale 3D face database and information processing[J].Journal of Computer Research and Development,2009,6:1009-1018. [119] SAVRAN A,ALYUZ N,DIBEKLIOGLU H,et al.Bosphorus database for 3D face analysis[C]//Proceedings of the Biometrics and Identity Management:First European Workshop,Roskilde,May 7-9,2008.Cham:Springer,2008:47-56. [120] GILANI S Z,MIAN A.Learning from millions of 3D scans for large-scale 3D face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,Jun 18-22,2018.Piscataway:IEEE,2018:1896-1905. [121] GOSWAMI G,BHARADWAJ S,VATSA M,et al.On RGB-D face recognition using Kinect[C]//Proceedings of the 2013 IEEE 6th International Conference on Biometrics:Theory,Applications and Systems,Washington,Sep 29-Oct 2.Piscataway:IEEE,2013:1-6. [122] VIJAYAN V,BOWYER K W,FLYNN P J,et al.Twins 3D face recognition challenge[C]//Proceedings of the 2011 International Joint Conference on Biometrics,Washington,Oct 11-13,2011.Piscataway:IEEE,2011:1-7. [123] GUPTA S,CASTLEMAN K R,MARKEY M K,et al.Texas 3D face recognition database[C]//Proceedings of the 2010 IEEE Southwest Symposium on Image Analysis & Interpretation,Austin,May 23-25,2010.Piscataway:IEEE,2010:97-100. [124] PHILLIPS P J,FLYNN P J,SCRUGGS T,et al.Overview of the face recognition grand challenge[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,Sep 21-23,2005.Piscataway:IEEE,2005:947-954. [125] ZHANG J,HUANG D,WANG Y,et al.Lock3Dface:a large-scale database of low-cost kinect 3D faces[C]//Proceedings of the 2016 International Conference on Biometrics,Halmstad,Jun 13-16,2016.Piscataway:IEEE,2016:1-8. [126] URBANOVá P,FERKOVá Z,JANDOVá M,et al.Introducing the FIDENTIS 3D face database[J].Anthropological Review,2018,81(2):202-223. [127] MIN R,KOSE N,DUGELAY J.KinectFaceDB:a Kinect database for face recognition[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2014,44(11):1534-1548. [128] CHENG S,KOTSIA I,PANTIC M,et al.4DFAB:a large scale 4D database for facial expression analysis and biometric applications[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,Jun 18-22,2018.Piscataway:IEEE,2018:5117-5126. [129] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [130] CUI J,HAN H,SHAN S,et al.RGB-D face recognition:a comparative study of representative fusion schemes[C]//Proceedings of the 13th Chinese Conference,Chinese Conference on Biometric Recognition,ürümqi,Aug 11-12,2018.Cham:Springer,2018:358-366. |
[1] | JI Ruirui, XIE Yuhui, LUO Fengkai, MEI Yuan. Face Recognition Method Based on Improved Visual Transformer [J]. Computer Engineering and Applications, 2023, 59(8): 117-126. |
[2] | CUI Shaoguo, DU Xiao, YANG Zetian. Neural Recommendation Algorithm Using Combinations of Low and High-Order Features Based on Multi-Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(8): 192-199. |
[3] | SUN Qinggang, WANG Cheng. Prediction of Fault Symptoms in Elevator Knowledge Base Based on Improved LSTM-AE Algorithm [J]. Computer Engineering and Applications, 2023, 59(7): 311-318. |
[4] | SUN Xiaohu, YU Axiang, SHEN Xulin, LI Hongjun. Abnormal Behavior Recognition Based on Hybrid Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(5): 140-147. |
[5] | WANG Lu, LIANG Mingjing, SHI Huiyu, WEN Xin, CAO Rui. Research on Emotion Recognition Based on EEG Time-Frequency-Spatial Multi-Domain Feature Fusion [J]. Computer Engineering and Applications, 2023, 59(4): 191-196. |
[6] | SUN Chao, WEN Mi, JING Lina. Application of Improved SSD Algorithm in Traffic Sign Detection [J]. Computer Engineering and Applications, 2023, 59(4): 147-155. |
[7] | TIAN Jiewen, YANG Liang, ZHANG Li, MAO Guoqing, LIN Hongfei. Research on Prediction of Crime Based on Self-Supervised Learning Language Model [J]. Computer Engineering and Applications, 2023, 59(3): 276-281. |
[8] | SHE Xiangyang, JING Renjie, DONG Lihong. Research on Hyperspectral Ground Object Classification Algorithm Based on 3D Dense Full Convolution [J]. Computer Engineering and Applications, 2023, 59(3): 112-117. |
[9] | YE Zixun, ZHANG Hongying, HE Yujun. Lightweight Masked Face Recognition Algorithm Incorporating Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(3): 166-174. |
[10] | YANG Xiaoyan, DENG Miaolei, ZHANG Dexian, LI Lei, WANG Cui. Review of Age-Invariant Face Recognition Methods Based on Discriminant Models [J]. Computer Engineering and Applications, 2023, 59(24): 16-25. |
[11] | SUN Liujie, ZHAI Renjie, WANG Wenju, PANG Maoran. Point Cloud Feature Extraction Network Based on 3D Feature Dynamic Fusion [J]. Computer Engineering and Applications, 2023, 59(24): 209-215. |
[12] | PAN Jianwen, ZHANG Zhihua, LIN Gaoyi, CUI Zhanqi. Android Malware Detection Based on Feature Selection [J]. Computer Engineering and Applications, 2023, 59(21): 287-295. |
[13] | HU Junping, WANG Hongshu, DAI Xiaobiao, GAO Xiaolin. Real-Time Detection Algorithm for Small-Target Traffic Signs Based on Improved YOLOv5 [J]. Computer Engineering and Applications, 2023, 59(2): 185-193. |
[14] | GONG Yu, ZHAO Shengpu, XU Junjie, ZHAO Huimin. Research on Hyperspectral Image Classification Combining Improved LBP and SRC [J]. Computer Engineering and Applications, 2023, 59(2): 253-260. |
[15] | LI Junwen, ZHANG Hongying, HAN Bin. Lightweight Saliency Object Detection Guided by Deep Feature Aggregation [J]. Computer Engineering and Applications, 2023, 59(19): 122-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||