SUN Qinggang, WANG Cheng. Prediction of Fault Symptoms in Elevator Knowledge Base Based on Improved LSTM-AE Algorithm[J]. Computer Engineering and Applications, 2023, 59(7): 311-318.
[1] ABDEL N,MOHAMED,KARAR M.Accurate photovoltaic power forecasting models using deep LSTM-RNN[J].Neural Computing and Applications,2019,31(7):2727-2740.
[2] GU S,KELLY B,XIU D.Autoencoder asset pricing models[J].Journal of Econometrics,2021,222(1):429-450.
[3] DAI A M,QUOC V.Semi-supervised sequence learning[C]//Advances in Neural Information Processing Systems,2015:3079-3087.
[4] HOU B,YANG J Y.LSTM-based auto-encoder model for ECG arrhythmias classification[J].IEEE Transactions on Instrumentation and Measurement,2019,69(4):1232-1240.
[5] YU W,KIM Y,MECHEFSKE C.An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J].Reliability Engineering & System Safety,2020,199:106926.
[6] 滕建,滕飞,李天瑞.基于3D卷积和 LSTM 编码解码的出行需求预测[J].计算机科学,2021,48(12):195-203.
TENG J,TENG F,LI T R.Travel demand prediction based on 3D convolution and LSTM encoding and decoding[J].Computer Science,2021,48(12):195-203.
[7] SUN Y Q,LI J,LIU J,et al.Using causal discovery for feature selection in multivariate numerical time series[J].Machine Learning,2015,101(1):377-395.
[8] BACCIU D.Unsupervised feature selection for sensor time-series in pervasive computing applications[J].Neural Computing and Applications,2016,27(5):1077-1091.
[9] 张坤华,丁立新,万润泽.基于相关性密度的多变量时间序列属性选择[J].计算机应用与软件,2017,34(12):273-277.
ZHANG K H,DING L X,WAN R Z.Attribute selection of multivariate time series based on correlation density[J].Computer Applications and Software,2017,34(12):273-277.
[10] YANG H,CHEN Y P.Hybrid deep learning and empirical mode decomposition model for time series applications[J].Expert Systems with Applications,2019,120:128-138.
[11] ANSELL P J,MULLENERS K.Multiscale vortex characteristics of dynamic stall from empirical mode decomposition[J].AIAA Journal,2020,58(2):600-617.
[12] CHENG Y,WANG Z,CHEN B,et al.An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis[J].ISA Transactions,2019,91:218-234.
[13] WITT B,ROHE D P.Digital image correlation as an experimental modal analysis capability[J].Experimental Techniques,2021,45(3):273-286.
[14] ZHANG Y G,CHEN G,PAN G,et al.A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting[J].Energy Conversion and Management,2019,195:180-197.
[15] HUANG Q Y,XIE L F,YIN G F,et al.Acoustic signal analysis for detecting defects inside an arc magnet using a combination of variational mode decomposition and beetle antennae search[J].ISA Transactions,2020,102:347-364.
[16] KHARE S K,BAJAJ V.An evolutionary optimized variational mode decomposition for emotion recognition[J].IEEE Sensors Journal,2020,21(2):2035-2042.
[17] WANG Y,CHEN Q,HONG T,et al.Review of smart meter data analytics:applications,methodologies,and challenges[J].IEEE Transactions on Smart Grid,2018,10(3):3125-3148.
[18] CHEN X,YANG Y,CUI Z,et al.Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy[J].Energy,2019,174:1100-1109.
[19] LONG D,NIU C,ZHOU H L,et al.Application of VMD algorithm in time-frequency analysis of seismic data[J].Progress in Geophysics,2020,35(1):166-173.
[20] SAGHEER A,KOTB M.Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems[J].Scientific Reports,2019,9(1):1-16.
[21] ALHNAITY B.An autoencoder wavelet based deep neural network with attention mechanism for multi-step prediction of plant growth[J].Information Sciences,2021,560:35-50.
[22] XU B,LIU J,HOU X,et al.Attention by selection:a deep selective attention approach to breast cancer classification[J].IEEE Transactions on Medical Imaging,2019,39(7):1930-1941.
[23] ZHAO Z,BAO Z,ZHANG Z,et al.Automatic assessment of depression from speech via a hierarchical attention transfer network and attention autoencoders[J].IEEE Journal of Selected Topics in Signal Processing,2019,14(2):423-434.
[24] 陆莉霞,邹俊忠,郭玉成,等.多模态融合的膝关节损伤预测[J].计算机工程与应用,2021,57(9):225-232.
LU L X,ZOU J Z,GUO Y C,et al.Prediction of knee joint injury based on multimodal fusion[J].Computer Engineering and Applications,2021,57(9):225-232.
[25] 陈彬,张荣梅,张琦.DCFM:基于深度学习的混合推荐模型[J].计算机工程与应用,2021,57(3):150-155.
CHEN B,ZHANG R M,ZHANG Q.DCFM:hybrid recommendation model based on deep learning[J].Computer Engineering and Applications,2021,57(3):150-155.