LIN Xia, LI Jianwei. Research on Age Synthesis of Adolescents Under Constraints of Kinship[J]. Computer Engineering and Applications, 2023, 59(22): 166-173.
[1] GRIMMER M,RAMACHANDRA R,BUSCH C.Deep face age progression:a survey[J].IEEE Access,2021,9:83376-83393.
[2] HUANG Z L,WENG W G.Analysis on geographical migration networks of child trafficking crime for illegal adoption from 2008 to 2017 in China[J].Physica A:Statistical Mechanics and its Applications,2019,528:121404.
[3] DEB D,AGGARWAL D,JAIN A K.Finding missing children:aging deep face features[J].arXiv:1911.07538,2019.
[4] DEB D,NAIN N,JAIN A K.Longitudinal study of child face recognition[C]//Proceedings of the 11th IAPR International Conference on Biometrics,2018:225-232.
[5] HAN J H.Prediction of changed faces with HSCNN[J].Computers Materials & Continua,2022,71(2):3747-3759.
[6] WANG H,SANCHEZ V,LI C T.Age-oriented face synthesis with conditional discriminator pool and adversarial triplet loss[J].IEEE Transactions on Image Processing,2021,30:5413-5425.
[7] SONG J,ZHANG J,GAO L,et al.AgeGAN++:face aging and rejuvenation with dual conditional GANs[J].IEEE Transactions on Multimedia,2021,24:791-804.
[8] LIU Y,LI Q,SUN Z,et al.a3GAN:an attribute-aware attentive generative adversarial network for face aging[J].IEEE Transactions on Information Forensics and Security,2021,16:2776-2790.
[9] HUANG Z,CHEN S,ZHANG J,et al.PFA-GAN:progressive face aging with generative adversarial network[J].IEEE Transactions on Information Forensics and Security,2021,16:2031-2045.
[10] BIAN X H,LI J W.Conditional adversarial consistent identity autoencoder for cross-age face synthesis[J].Multimedia Tools and Applications,2021,80(9):14231-14253.
[11] ALALUF Y,PATASHNIK O,COHEN-OR D.Only a matter of style:age transformation using a style-based regression model[J].ACM Transactions on Graphics,2021,40(4):45.
[12] SRINIVAS N,RICANEK K,MICHALSKI D,et al.Face recognition algorithm bias:performance differences on images of children and adults[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2019:2269-2277.
[13] RICANEK K,BHARDWAJ S,SODOMSKY M.A review of face recognition against longitudinal child faces[C]//Proceedings of the 14th International Conference of the Biometrics Special Interest Group,2015:15-26.
[14] QIN X Q,TAN X Y,CHEN S C.Tri-subject kinship verification:understanding the core of a family[J].IEEE Transactions on Multimedia,2015,17(10):1855-1867.
[15] ANTIPOV G,BACCOUCHE M,DUGELAY J L.Face aging with conditional generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Image Processing,2017:2089-2093.
[16] ZHANG Z,SONG Y,QI H.Age progression/regression by conditional adversarial autoencoder[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4352-4360.
[17] YANG H Y,HUANG D,WANG Y H,et al.Learning face age progression:a pyramid architecture of GANs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:31-39.
[18] LI P,HU Y,LI Q,et al.Global and local consistent age generative adversarial networks[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition,2018:1073-1078.
[19] TANG X,WANG Z,LUO W,et al.Face aging with identity-preserved conditional generative adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:7939-7947.
[20] ZHAO J,CHENG Y,CHENG Y,et al.Look across elapse:disentangled representation learning and photorealistic cross-age face synthesis for age-invariant face recognition[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019:9251-9258.
[21] ZHAO J,YAN S,FENG J.Towards age-invariant face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(1):474-487.
[22] HUANG Z,ZHANG J,SHAN H.When age-invariant face recognition meets face age synthesis:a multi-task learning framework[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:7278-7287.
[23] DEB D,AGGARWAL D,JAIN A K.Identifying missing children:face age-progression via deep feature aging[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition,2021:10540-10547.
[24] CHANDALIYA P K,NAIN N.ChildGAN:face aging and rejuvenation to find missing children[J].Pattern Recognition,2022,129:108761.
[25] ZHANG H,GOODFELLOW L,METAXAS D,et al.Self-attention generative adversarial networks[C]//Proceedings of the 36th International Conference on Machine Learning,2019:7354-7363.
[26] LIU L,YU H B,WANG S H,et al.Learning shape and texture progression for young child face aging[J].Signal Processing:Image Communication,2021,93:116127.
[27] SHU X B,TANG J H,LAI H J,et al.Kinship-guided age progression[J].Pattern Recognition,2016,59:156-167.
[28] ZHANG K H,HUANG Y Z,SONG C F,et al.Kinship verification with deep convolutional neural networks[C]//Proceedings of the British Machine Vision Conference,2015:148.
[29] DEHGHAN A,ORTIZ E G,VILLEGAS R,et al.Who do I look like? Determining parent-offspring resemblance via gated autoencoders[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:1757-1764.
[30] ZHANG P P,WANG D,LU H C,et al.Amulet:aggregating multi-level convolutional features for salient object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:202-211.
[31] ZHANG Q,HUANG N C,YAO L,et al.RGB-T salient object detection via fusing multi-level CNN features[J].IEEE Transactions on Image Processing,2019,29:3321-3335.
[32] YAN H B,SONG C H.Multi-scale deep relational reasoning for facial kinship verification[J].Pattern Recognition,2021,110:107541.
[33] LU J W,HU J L,TAN Y P.Discriminative deep metric learning for face and kinship verification[J].IEEE Transactions on Image Processing,2017,26(9):4269-4282.
[34] ZHOU X J,JIN K,XU M,et al.Learning deep compact similarity metric for kinship verification from face images[J].Information Fusion,2019,48:84-94.
[35] NANDY A,MONDAL S S.Kinship verification using deep siamese convolutional neural network[C]//Proceedings of the 14th IEEE International Conference on Automatic Face and Gesture Recognition,2019:739-743.
[36] ISOLA P,ZHU J Y,ZHOU T H,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,2017:5967-5976.
[37] RICHARDSON E,ALALUF Y,PATASHNIK O,et al.Encoding in style:a stylegan encoder for image-to-image translation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:2287-2296.
[38] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.
1556,2014.
[39] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[40] HUANG S,LIN J K,HUANGFU L W,et al.Adaptively weighted k-tuple metric network for kinship verification[J].IEEE Transactions on Cybernetics,2022.DOI:10.1109/TCYB.2022.3163707.
[41] DENG J K,GUO J,XUE N N,et al.ArcFace:additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4685-4694.
[42] GEORGOPOULOS M,PANAGAKIS Y,PANTIC M.Modeling of facial aging and kinship:a survey[J].Image and Vision Computing,2018,80:58-79.
[43] SCHROFF F,KALENICHENKO D,PHILBIN J,et al.FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:815-823.