COVID-19 X-Ray Diagnosis Method Based on Improved Global Contextual Attention
JI Xurui, LIU Jing, JI Hui, ZHANG Shuai, CAO Hui
1.College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
2.School of History,Culture & Tourism, Shaanxi Preschool Teachers College,Xi’an 710100, China
JI Xurui, LIU Jing, JI Hui, ZHANG Shuai, CAO Hui. COVID-19 X-Ray Diagnosis Method Based on Improved Global Contextual Attention[J]. Computer Engineering and Applications, 2023, 59(21): 222-230.
[1] CHEN N,ZHOU M,DONG X,et al.Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan,China:a descriptive study[J].The Lancet,2020,395(10223):507-513.
[2] XIE X,ZHONG Z,ZHAO W,et al.Chest CT for typical 2019-nCoV pneumonia:relationship to negative RT-PCR testing[J].Radiology,2020,296(2):200343.
[3] RAJPURKAR P,IRVIN J,ZHU K,et al.Chexnet:radiologist-level pneumonia detection on chest x-rays with deep learning[J].arXiv.1711.05225,2017.
[4] ZECH J R,BADGELEY M A,LIU M,et al.Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs:a cross-sectional study[J].PLoS Medicine,2018,15(11):e1002683.
[5] FENG Y,YANG X,QIU D,et al.PCXRNet:pneumonia diagnosis from chest X-ray images using condense attention block and multiconvolution attention block[J].IEEE Journal of Biomedical and Health Informatics,2022,26(4):1484-1495.
[6] 刘锐,丁辉,尚媛园,等.COVID-19医学影像数据集及研究进展[J].计算机工程与应用,2021,57(22):15-27.
LIU R,DING H,SHANG Y Y,et al.COVID-19 medical imaging dataset and research progress[J].Computer Engineering and Applications,2021,57(22):15-27.
[7] SOUSA P E D,CARNEIRO P C,OLIVEIRA M M,et al.COVID-19 classification in X-ray chest images using a new convolutional neural network:CNN-COVID[J].Research on Biomedical Engineering,2021,38:87-97.
[8] LOEY M,SMARANDACHE F,KHALIFA N.A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images[J].Neural Computing and Applications,2020:1-13.
[9] RAJPAL S,KUMAR N,RAJDAL A,et al.COV-ELM classifier:an extreme learning machine based identification of COVID-19 using chest-ray images[J].arXiv:2007. 08637v5,2020.
[10] WANG L,LIN Z Q,WONG A.COVID-Net:a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J].Scientific Reports,2020,10(1).
[11] MAITY A,NAIR T R,MEHTA S,et al.Automatic lung parenchyma segmentation using a deep convolutional neural network from chest X-rays[J].Biomedical Signal Processing and Control,2022,73:103398.
[12] XU Y,LAM H K,JIA G.MANet:a two-stage deep learning method for classification of COVID-19 from chest X-ray images[J].Neurocomputing,2021,443.
[13] KALAIVANI S,SEETHARAMAN K.A three-stage ensemble boosted convolutional neural network for classification and analysis of COVID-19 chest x-ray images[J].International Journal of Cognitive Computing in Engineering,2022,3(1):35-45.
[14] KARIM M R,D?HMEN T,COCHEZ M,et al.Deep COVID explainer:explainable COVID-19 diagnosis from chest X-ray images[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine(BIBM),2020:1034-1037.
[15] ZHANG Z,LIU Q,WANG Y.Road extraction by deep residual U-Net[J].IEEE Geoscience and Remote Sensing Letters,2018,15(5):749-753.
[16] 欧阳柳,贺禧,瞿绍军.全卷积注意力机制神经网络的图像语义分割[J].计算机科学与探索,2022,16(5):1136-1145.
OUYANG L,HE X,QU S J.Fully convolutional neural network with attention module for semantic segmentation[J].Journal of Frontiers of Computer Science and Technology,2022,16(5):1136-1145.
[17] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2015:234-241.
[18] WANG X,GIRSHICK R,GUPTA A,et al.Non-local neural networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7794-7803.
[19] CAO Y,XU J,LIN S,et al.GCNet:non-local networks meet squeeze-excitation networks and beyond[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop(ICCVW),2019:1971-1980.
[20] YANG Z,ZHU L,WU Y,et al.Gated channel transformation for visual recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2020:11791-11800.
[21] GUO M H,XU T X,LIU J J,et al.Attention mechanisms in computer vision:a survey[J]Computational Visual Media,2022,8:331-368.
[22] 卓天天,桑庆兵.注意力机制与复合卷积在手写识别中的应用[J].计算机科学与探索,2022,16(4):888-897.
ZHUO T T,SANG Q B.Application of attention mechanism and composite convolution in handwriting recognition[J].Journal of Frontiers of Computer Science and Technology,2022,16(4):888-897.
[23] 吴静然,丁恩杰,崔冉,等.采用多尺度注意力机制的旋转机械故障诊断方法[J].西安交通大学学报,2020,54(2):51-58.
WU J R,DING E J,CUI R,et al.A diagnostic approach for rotating machinery using multi-scale feature attention mechanism[J].Journal of Xi’an Jiaotong University,2020,54(2):51-58.
[24] IOANNOU Y,ROBERTSON D,CIPOLLA R,et al.Deep roots:improving CNN efficiency with hierarchical filter groups[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:5977-5986.
[25] LIU Y,SHAO Z,HOFFMANN N.Global attention mechanism:retain information to enhance channel-spatial Interactions[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2021.
[26] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision,2018.
[27] PARK J,WOO S,LEE J Y,et al.BAM:bottleneck attention module[J].arXiv:1807.06514,2018.
[28] CHOWDHURY M E H,RAHMAN T,KHANDAKAR A,et al.Can AI help in screening viral and COVID-19 pneumonia?[J].IEEE Access,2020(8):132665-132676.
[29] RAHMAN T,KHANDAKAR A,QIBLAWEY Y,et al.Exploring the effect of image enhancement techniques on COVID-19 detection using Chest X-rays images[J].Computers in Biology and Medicine,2021,132.
[30] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[31] JIE H,LI S,GANG S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[32] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision(ICCV),2017:618-626.