Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (21): 26-38.DOI: 10.3778/j.issn.1002-8331.2304-0248
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHAO Lijun, CAO Congying, ZHANG Jinjing, ZHAO Jie, CHEN Bintao, WANG Anhong
Online:
2023-11-01
Published:
2023-11-01
赵利军,曹聪颖,张晋京,赵杰,陈彬涛,王安红
ZHAO Lijun, CAO Congying, ZHANG Jinjing, ZHAO Jie, CHEN Bintao, WANG Anhong. Survey of Research on Compressed Image Enhancement Methods[J]. Computer Engineering and Applications, 2023, 59(21): 26-38.
赵利军, 曹聪颖, 张晋京, 赵杰, 陈彬涛, 王安红. 压缩图像增强方法研究综述[J]. 计算机工程与应用, 2023, 59(21): 26-38.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2304-0248
[1] 颜兵,王金鹤,赵静.基于均值滤波和小波变换的图像去噪技术研究[J].计算机技术与发展,2011,21(2):51-53. YAN B,WANG J H,ZHAO J.Research of image denoising technology based on mean filtering and wavelet transformation[J].Computer Technology and Development,2011,21(2):51-53. [2] 刘广迪.基于Kinect的案件现场三维重建方法研究[D].北京:中国人民公安大学,2017. LIU G D.Research on Kinect based 3D reconstruction method for case scenes[D].Beijing:People’s Public Security University of China,2017. [3] 李鸿林,张忠民,羿宗琪.中值滤波技术在图像处理中的应用[J].信息技术,2004,28(7):26-27. LI H L,ZHANG Z M,YI Z Q.The application of median filtering on image processing[J].Information Technology,2004,28(7):26-27. [4] TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images[C]//International Conference on Computer Vision.Bombay:IEEE,2002. [5] ZHANG J,XIONG R,ZHAO C,et al.CONCOLOR:constrained non-convex low-rank model for image deblocking[J].IEEE Transactions on Image Processing,2016,25(3):1246-1259. [6] CHANG H,NG M,ZENG T.Reducing artifacts in JPEG decompression via a learned dictionary[J].IEEE Transactions on Signal Processing,2013,62(3):718-728. [7] BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:60-65. [8] MA X,ZOU J,LI W,et al.Miniature spectrometer based on a Fourier transform spectrometer chip and a commercial photodetector array[J].Chinese Optics Letters,2019,17(12):123001. [9] HERRREO B A,LI J,KHAZAEI M,et al.On-chip Fourier-transform spectrometers and machine learning:a new route to smart photonic sensors[J].Optics Letters,2019,44(23):5840-5843. [10] 付华,李楠,高楠.数字信号处理[M].北京:电子工业出版社,2018:231-240. FU H,LI N,GAO N,et al.Digital signal processing[M].Beijing:Publishing House of Electronics Industry,2018:231-240. [11] COIFMAN R,WICKERHAUER V.Entropy-based algorithms for best basis selection[J].IEEE Transactions on Information Theory,1992,38(2):713-718. [12] MICHAL A,MICHAL E,ALFRED B.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing:A Publication of the IEEE Signal Processing Society,2006,54(11):4311-4322. [13] DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D-transform domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. [14] DONG C,DENG Y,CHEN C L,et al.Compression artifacts reduction by a deep convolutional network[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:576-584. [15] ZHANG K,ZUO W,CHEN Y,et al.Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155. [16] JIN Z,MUHAMMAD Z I,BOBKOV D,et al.A flexible deep CNN framework for image restoration[J].IEEE Transactions on Multimedia,2019,22(4):1055-1068. [17] TODERICI G,O’MALLEY S M,HWANG S J,et al.Variable rate image compression with recurrent neural networks[J].arXiv:1511.06085,2015. [18] TODERICI G,VINCENT D,JOHNSTON N,et al.Full resolution image compression with recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:5306-5314. [19] RIPPEL O,BOURDEV L.Real-time adaptive image compression[C]//Proceedings of the 34th International Conference on Machine Learning,2017:2922-2930. [20] WANG Z,CUN X,BAO J,et al.Uformer:a general U-shaped transformer for image restoration[J].arXiv:2106.03106,2021. [21] LIANG J,CAO J,SUN G,et al.SwinIR:image restoration using swin transformer[J].arXiv:2108.10257,2021. [22] WANG Z,LIU D,CHANG S,et al.D3:deep dual-domain based fast restoration of JPEG-compressed images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2764-2772. [23] LIU P,ZHANG P,ZHANG K,et al.Multi-level wavelet-CNN for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:773-782. [24] CHEN H,HE X,QING L,et al.DPW-SDNet:dual pixel-wavelet domain deep CNNs for soft decoding of JPEG-compressed images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:711-720. [25] KIRMEMIS O,BAKAR G,TEKALP A M.Learned compression artifact removal by deep residual networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:2602-2605. [26] ZHANG X,YANG W,HU Y,et al.DMCNN:dual-domain multi-scale convolutional neural network for compression artifacts removal[C]//The 25th IEEE International Conference on Image Processing(ICIP),2018:390-394. [27] ZHANG B,CHEN Y,TIAN X,et al.Implicit dual-domain convolutional network for robust color image compression artifact reduction[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,30:3982-3994. [28] ZHANG K,ZUO W,ZHANG L.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3262-3271. [29] BAI Y,YANG X,LIU X,et al.Towards end-to-end image compression and analysis with transformers[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2022:104-112. [30] GUO J,CHAO H.One-to-many network for visually pleasing compression artifacts reduction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3038-3047. [31] FAN Q,CHEN D,YUAN L,et al.A general decoupled learning framework for parameterized image operators[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,43(1):33-47. [32] HE J,DONG C,QIAO Y.Interactive multi-dimension modulation with dynamic controllable residual learning for image restoration[C]//Proceedings 16th European Conference on Computer Vision,Glasgow,UK,August 23-28,2020.[S.l.]:Springer International Publishing,2020:53-68. [33] WANG W,GUO R,TIAN Y,et al.CFSNet:toward a controllable feature space for image restoration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:4140-4149. [34] XU J,YUAN M,YAN D M,et al.Deep unfolding multi-scale regularizer network for image denoising[J].Computational Visual Media,2023,9(2):335-350. [35] NING Q,DONG W,SHI G,et al.Accurate and lightweight image super-resolution with model-guided deep unfolding network[J].IEEE Journal of Selected Topics in Signal Processing,2020,15(2):240-252 [36] YAN K,ZHOU M,ZHANG L,et al.Memory-augmented model-driven network for pansharpening[C]//Proceedings 17th European Conference on Computer Vision,2022:306-322. [37] YANG G,ZHANG L,ZHOU M,et al.Model-guided multi-contrast deep unfolding network for MRI super-resolution reconstruction[C]//Proceedings of the 30th ACM International Conference on Multimedia,2022:3974-3982. [38] FU X,WANG M,CAO X,et al.A model-driven deep unfolding method for JPEG artifacts removal[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(11):6802-6816. [39] YOU D,XIE J,ZHANG J.ISTA-Net++:flexible deep unfolding network for compressive sensing[C]//2021 IEEE International Conference on Multimedia and Expo(ICME),2021:1-6. [40] SONG J,CHEN B,ZHANG J.Memory-augmented deep unfolding network for compressive sensing[C]//Proceedings of the 29th ACM International Conference on Multimedia,2021:4249-4258. [41] YOU D,ZHANG J,XIE J,et al.COAST:controllable arbitrary-sampling network for compressive sensing[J].IEEE Transactions on Image Processing,2021,30:6066-6080. [42] ZHANG J,ZHAO C,GAO W.Optimization-inspired compact deep compressive sensing[J].IEEE Journal of Selected Topics in Signal Processing,2020,14(4):765-774. [43] MOU C,WANG Q,ZHANG J.Deep generalized unfolding networks for image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:17399-17410. [44] WANG H,LI Y,ZHANG H,et al.InDuDoNet+:a model-driven interpretable dual domain network for metal artifact reduction in CT images[J].arXiv:2112.12660,2021. [45] ZHENG C,SHI D,SHI W.Adaptive unfolding total variation network for low-light image enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:4439-4448. [46] HUANG Y,LI S,WANG L,et al.Unfolding the alternating optimization for blind super resolution[C]//Advances in Neural Information Processing Systems,2020:5632-5643. [47] WU W,WENG J,ZHANG P,et al.URetinex-Net:retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:5901-5910. [48] REN C,HE X,QING L,et al.Deep deblocker driven adaptive iteration scheme for compressed image recovery[C]//2021 IEEE International Conference on Multimedia and Expo(ICME),2021:1-6. [49] AGHABIGLOU A,EKSIOGLU E M.Deep unfolding architecture for MRI reconstruction enhanced by adaptive noise maps[J].Biomedical Signal Processing and Control,2022,78:104016. [50] ZHOU M,YAN K,PAN J,et al.Memory-augmented deep unfolding network for guided image super-resolution[J].International Journal of Computer Vision,2023,131(1):215-242. [51] WANG H,XIE Q,ZHAO Q,et al.RCDNet:an interpretable rain convolutional dictionary network for single image deraining[J].IEEE Transactions on Neural Networks and Learning Systems,2023. [52] ZHANG K,ZUO W,GU S,et al.Learning deep CNN denoiser prior for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3929-3938. [53] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [54] CANDèS E J,TAO T.The power of convex relaxation:near-optimal matrix completion[J].IEEE Transactions on Information Theory,2010,56(5):2053-2080. [55] PEARSON K.LIII.On lines and planes of closest fit to systems of points in space[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1901,2(11):559-572. [56] 邸云霞,孔慧华,牛晓伟.基于主成分分析的多能谱CT图像分析方法研究[J].CT理论与应用研究,2022,31(6):749-760. DI Y X,KONG H H,NIU X W.Research on image analysis method of spectral CT based on principal component analysis[J].CT Theory and Applications,2022,31(6):749-760. [57] 肖汉,孙陆鹏,李彩林,等.面向GPU的直方图统计图像增强并行算法[J].计算机科学与探索,2022,16(10):2273-2285. XIAO H,SUN L P,LI C L,et al.GPU-oriented parallel algorithm for histogram statistical image enhancement[J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2273-2285. [58] 林成创,单纯,赵淦森,等.机器视觉应用中的图像数据增广综述[J].计算机科学与探索,2021,15(4):583-611. LIN C C,SHAN C,ZHAO G S,et al.Review of image data augmentation in computer vision[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):583-611. [59] GUTMANN M,HYV?RINEN A.Noise-contrastive estimation:a new estimation principle for unnormalized statistical models[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,2010:297-304. [60] KINGMA D P,WELLING M.Stochastic gradient VB and the variational auto-encoder[C]//Second International Conference on Learning Representations,2014:121. [61] CARON M,MISRA I,MAIRAL J,et al.Unsupervised learning of visual features by contrasting cluster assignments[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems,2020:9912-9924. [62] HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9729-9738. [63] GRILL J B,STRUB F,ALTCHé F,et al.Bootstrap your own latent-a new approach to self-supervised learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems,2020:21271-21284. [64] WU G,JIANG J,LIU X,et al.A practical contrastive learning framework for single image super-resolution[J].arXiv:2111.13924,2021. [65] JI H,FENG X,PEI W,et al.U2-former:a nested U-shaped transformer for image restoration[J].arXiv:2112.02279,2021. [66] WU H,QU Y,LIN S,et al.Contrastive learning for compact single image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:10551-10560. [67] LI F,SHEN L,MI Y,et al.DRCNet:dynamic image restoration contrastive network[C]//Proceedings 17th European Conference on Computer Vision,Tel Aviv,Israel,October 23-27,2022:514-532. [68] LI B,LIU X,HU P,et al.All-in-one image restoration for unknown corruption[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:17452-17462. [69] KAELBLING L P,LITTMAN M L,MOORE A W.Reinforcement learning:a survey[J].Journal of Artificial Intelligence Research,1996,4:237-285. [70] RODERICK M,MACGLASHAN J,TELLEX S.Implementing the deep q-network[J].arXiv:1711.07478,2017. [71] CASAS N.Deep deterministic policy gradient for urban traffic light control[J].arXiv:1703.09035,2017. [72] LILLICRAP T P,HUNT J J,PRITZEL A,et al.Continuous control with deep reinforcement learning[J].arXiv:1509.02971,2015. [73] YU K,DONG C,LIN L,et al.Crafting a toolchain for image restoration by deep reinforcement learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:2443-2452. [74] ZHANG J,ZHANG Q,ZHAO X,et al.Boosting denoisers with reinforcement learning for image restoration[J].Soft Computing,2022,26(7):3261-3272. [75] YU K,WANG X,DONG C,et al.Path-restore:learning network path selection for image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(10):7078-7092. [76] FURUTA R,INOUE N,YAMASAKI T.PixelRL:fully convolutional network with reinforcement learning for image processing[J].IEEE Transactions on Multimedia,2019,22(7):1704-1719. [77] BENGIO Y,LOURADOUR J,COLLOBERT R,et al.Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning,2009:41-48. [78] KOCMI T,BOJAR O.Curriculum learning and minibatch bucketing in neural machine translation[J].arXiv:1707.09533,2017. [79] KUMAR M,PACKER B,KOLLER D.Self-paced learning for latent variable models[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems,2010:1189-1197. [80] CHANG Y,CHEN M,YU C,et al.Direction and residual awareness curriculum learning network for rain streaks removal[J].IEEE Transactions on Neural Networks and Learning Systems,2023:1-15. [81] SHU J,XIE C,GAO Z.Blind restoration of atmospheric turbulence-degraded images based on curriculum learning[J].Remote Sensing,2022,14(19):4797. [82] HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015. [83] HUANG Z,WANG N.Like what you like:knowledge distill via neuron selectivity transfer[J].arXiv:1707. 01219,2017. [84] PASSALIS N,TEFAS A.Learning deep representations with probabilistic knowledge transfer[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:268-284. [85] LEE S H,KIM D H,SONG B C.Self-supervised knowledge distillation using singular value decomposition[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:335-350. [86] ZHU H,CHEN Z,LIU S.Learning knowledge representation with meta knowledge distillation for single image super-resolution[J].arXiv:2207.08356,2022. [87] XIA B,ZHANG Y,WANG Y,et al.Knowledge distillation based degradation estimation for blind super-resolution[J].arXiv:2211.16928,2022. [88] LI J,YANG H,YI Q,et al.Multiple degradation and reconstruction network for single image denoising via knowledge distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:558-567. [89] CUI X,WANG C,REN D,et al.Semi-supervised image deraining using knowledge distillation[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8327-8341. [90] GALTERI L,SEIDENARI L,BERTINI M,et al.Deep universal generative adversarial compression artifact removal[J].IEEE Transactions on Multimedia,2019,21(8):2131-2145. [91] 张雪峰,许华文.一种基于条件生成对抗网络的高感知图像压缩方法[J].东北大学学报(自然科学版),2022,43(6):783-791. ZHANG X F,XU H W.High perceptual image compression based on conditional GAN[J].Journal of Northeastern University(Natural Science),2022,43(6):783-791. [92] MA H,LIU D,WU F.Rectified wasserstein generative adversarial networks for perceptual image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(3):3648-3663. [93] ZHANG B W,GU S Y,ZHANG B,et al.StyleSwin:transformer-based GAN for high-resolution image generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:11304-11314. [94] YU S,CHEN B,XU Y,et al.HEVC compression artifact reduction with generative adversarial networks[C]//2019 11th International Conference on Wireless Communications and Signal Processing(WCSP),2019:1-6. [95] NAYMAN N,NOY A,RIDNIK T,et al.XNAS:Neural architecture search with expert advice[J].arXiv:1906. 08031,2019. [96] CHEN Y,MENG G,ZHANG Q,et al.RENAS:reinforced evolutionary neural architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4787-4796. [97] LEE B,KO K,HONG J,et al.Domain-agnostic single-image super-resolution via a meta-transfer neural architecture search[J].Neurocomputing,2023,524:59-68. [98] CHENG G,MATSUNE A,DU H,et al.Exploring more diverse network architectures for single image super-resolution[J].Knowledge-Based Systems,2022,235:107648. [99] WU Y,GONG Y,ZHAO P,et al.Compiler-aware neural architecture search for on-mobile real-time super-resolution[C]//17th European Conference on Computer Vision,Tel Aviv,Israel,October 23-27,2022:92-111. [100] CAI L,FU Y,HUO W,et al.Multi-scale attentive image de-raining networks via neural architecture search[J].arXiv:2207.00728,2022. [101] NING Q,DONG W,LI X,et al.Searching efficient model-guided deep network for image denoising[J].IEEE Transactions on Image Processing,2022,32:668-681. [102] ZHANG X,ZENG H,ZHANG L.Efficient hardware-aware neural architecture search for image super-resolution on Mobile Devices[C]//Proceedings of the Asian Conference on Computer Vision,2022:721-738. |
[1] | GOU Yuanmin, YAN Jianwei, ZHANG Fugui, SUN Chengyu, XU Yong. Research Progress on Vision System and Manipulator of Fruit Picking Robot [J]. Computer Engineering and Applications, 2023, 59(9): 13-26. |
[2] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[3] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[4] | SUN Aijing, WANG Guoqing. Neighbor Relation-Aware Graph Convolutional Network for Recommendation [J]. Computer Engineering and Applications, 2023, 59(9): 112-122. |
[5] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[6] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[7] | WANG Changhai, LIANG Hui, WANG Bo, CUI Xiaoxu. Graph Convolutional Index Trend Prediction Based on Correlation of Index Constituent Stocks [J]. Computer Engineering and Applications, 2023, 59(9): 319-328. |
[8] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[9] | YANG Chongluo, SHENG Long, WEI Zhongcheng, WANG Wei. Research on COVID-19 Text Entity Relation Extraction and Dataset Construction Methods [J]. Computer Engineering and Applications, 2023, 59(8): 97-104. |
[10] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[11] | LU Lin, JI Fanfan, YUAN Xiaotong. Sparse Binary Programming Method for Pruning of Randomly Initialized Neural Networks [J]. Computer Engineering and Applications, 2023, 59(8): 138-147. |
[12] | LAN Hong, CHEN Hao, ZHANG Pufen. Point Cloud Classification and Segmentation Model Based on Graph Convolution and 3D Direction Convolution [J]. Computer Engineering and Applications, 2023, 59(8): 182-191. |
[13] | CUI Shaoguo, DU Xiao, YANG Zetian. Neural Recommendation Algorithm Using Combinations of Low and High-Order Features Based on Multi-Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(8): 192-199. |
[14] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[15] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||