BAO Yifeng, YANG Degang. Attention Exposure Fusion Network for Low-Illumination Image Enhancement[J]. Computer Engineering and Applications, 2023, 59(20): 237-244.
[1] GOW R D,RENSHAW D,FINDLATER K,et al.A comprehensive tool for modeling cmos image-sensor-noise performance[J].IEEE Transactions on Electron Devices,2007,54(6):1321-1329.
[2] CAO Y,XU J R,L S,et al.Global context networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(6):6881-6895.
[3] LI X,WANG W H,HU X L,et al.Selective kernel networks[C]//Conference on Computer Vision and Pattern Recognition(CVPR),2019:510-519.
[4] LI S,YIN H,FANG L.Group-sparse representation with dictionary learning for medical image denoising and fusion[J].IEEE Transactions on Biomedical Engineering,2012,59(12):3450-3459.
[5] SONI V,BHANDARI A K,KUMAR A,et al.Improved sub-band adaptive thresholding function for denoising of satellite image based on evolutionary algorithms[J].IET Signal Processing,2013,7(8):720-730.
[6] KWON Y,KIM K I,TOMPKIN J,et al.Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1792-1805.
[7] REN S,HE K,GIRSHICK R,et al.FasterR-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[8] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition,Las Vegas,NV,USA,2016.
[9] PORTILLA J,STRELA V,WAINWRIGHT M J,et al.Image denoising using scale mixtures of Gaussians in the wavelet domain[J].IEEE Transactions on Image Processing,2003,12(11):1338-1351.
[10] ELAD M,AHARON M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.
[11] DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
[12] CHEN Y,POCK T.Trainable nonlinear reaction diffusion:a flexible framework for fast and effective image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1256-1272.
[13] BURGER H C,SCHULER C J,HARMELING S.Image denoising:can plain neural networks compete with BM3D?[C]//IEEE Conference on Computer Vision and Pattern Recognition,2012:2392-2399.
[14] LORE G K,AKINTAYO A,SARKAR S.LLNet:a deep autoencoder approach to natural low-light image enhancement[J].Pattern Recognition,2017,61(1):650-662.
[15] JAIN V,SEUNG H S.Natural image denoising with convolutional networks[C]//NIPS’08:Proceedings of the 21st International Conference on Neural Information Processing Systems,2008:769-776.
[16] LONG,SHELHAMER J,DARRELL E.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440.
[17] LEE C,KIM C.Contrast enhancement based on layered difference representation of 2D histogram[J].IEEE Transactions on Image Processing,2013,22(12):5372-5384.
[18] LAND E H.The retinex theory of color vision[J].Scientific American,1986,237(6):108-129.
[19] CHENG H D,SHI X J,et al.A simple and effective histogram equalization approach to image enhancement[J].Digital Signal Processing,2004,14(2):158-170.
[20] YING Z Q,LI G,GAO W,et al.A bio-inspired multi-exposure fusion framework for low-light image enhancement[J].arXiv:1711.00591,2017.
[21] TAO L,ZHU C,XIANG G Q,et al.LLCNN:a convolutional neural network for low-light image enhancement[C]//IEEE Visual Communications and Image Processing(VCIP),2017:1-4.
[22] WEI C,WANG W J,YANG W H,et al.Deep retinex decomposition for low-light enhancement[J].arXiv:1808.
04560,2018.
[23] CHEN Q F,XU J,KOLTUN V,et al.Fast image processing with fully-convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2516-2525.
[24] CHEN C,CHEN Q F,XU J,et al.Learning to see in the dark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3291-3300.
[25] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2015:234-241.
[26] SHI W Z,CABALLERO J,HUSZáR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:1874-1883.
[27] AITTALA M,DURAND F.Burst image deblurring using permutation invariant convolutional neural networks[C]//Proceedings of the European Conference on Computer Vision,2018:731-747.
[28] KINGMA D,BA J.Adam:a method for stochastic optimization[J].arXiv:1412.6980,2014.
[29] ZHAO H,GALLO O,FROSIO I,et al.Loss functions for image restoration with neural networks[J].IEEE Transactions on Computational Imaging,2017,3(1):47-57.
[30] GUO X J,LI Y,LING H.LIME:low-light image enhancement via illumination map estimation[J].IEEE Transactions on Image Processing,2017,26(2):982-993.
[31] GUO C,LI C Y,GUO J C H.Zero-reference deep curve estimation for low-light image enhancement[C]//Computer Vision and Pattern Recognition(CVPR),2020:1780-1789.
[32] LAMBA M,MITRA K.Restoring extremely dark images in real time[C]//Computer Vision and Pattern Recognition(CVPR),2021:3486-3496.
[33] GU S H,LI Y W,GOOL V,et al.Self-guided network for fast image denoization[C]//IEEE/CVF International Conference on Computer Vision(ICCV),2019:2511-2520.
[34] XHU K,YANG X,YIN B C.et al.Learning to restore low-light images via decomposition-and-enhancement[C]//Computer Vision and Pattern Recognition(CVPR),2020:2278-2287.
[35] HUYNH-THU Q,GHANBARI M.Scope of validity of PSNR in image/video quality assessment[J].Electronics Letters,2008,44(13):800-801.
[36] WANG Z,BOVIK A C,SHEIKH H R.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[37] MITTAL A,SOUNDARARAJAN R,BOVIK A C,et al.Making a “completely blind” image quality analyzer[J].IEEE Signal Processing Letters,2013,20(3):209-212.