Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (18): 49-58.DOI: 10.3778/j.issn.1002-8331.2211-0219
• Research Hotspots and Reviews • Previous Articles Next Articles
DIAO Yi, ZHANG Kuixing, JIANG Mei, XU Yunfeng, WEI Benzheng
Online:
2023-09-15
Published:
2023-09-15
刁毅,张魁星,江梅,徐云峰,魏本征
DIAO Yi, ZHANG Kuixing, JIANG Mei, XU Yunfeng, WEI Benzheng. Research Progress of Deep Learning in Spine Image Segmentation[J]. Computer Engineering and Applications, 2023, 59(18): 49-58.
刁毅, 张魁星, 江梅, 徐云峰, 魏本征. 深度学习在脊椎图像分割中的研究进展[J]. 计算机工程与应用, 2023, 59(18): 49-58.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2211-0219
[1] XIANG Q,ZHAO Y,LIN J,et al.Epigenetic modifications in spinal ligament aging[J].Ageing Research Reviews,2022,77:101598. [2] XIAO L X,LIU C S,ZHONG S Z,et al.Effect of a traction exercise neck brace on cervical spondylopathy radiculopathy:a clinical study and finite element analysis[J].Evidence-Based Complementary and Alternative Medicine,2021:8825150. [3] WANG Y,CHE M,XIN J,et al.The role of IL-1β and TNF-α in intervertebral disc degeneration[J].Biomedicine & Pharmacotherapy,2020,131:110660. [4] LAVERDIèRE C,GEORGIOPOULOS M,AMES C P,et al.Adult spinal deformity surgery and frailty:a systematic review[J].Global Spine Journal,2022,12(4):689-699. [5] 郭春麟,张勇,刘祎,等.脊柱X射线图像分割方法[J].国外电子测量技术,2022,41(7):23-28. GUO C L,ZHANG Y,LIU Y,et al.Spinal X-ray image segmentation method[J].Foreign Electronic Measurement Technology,2022,41(7):23-28. [6] SINHA A,SPALKIT S,PRABHAKAR A,et al.Radiology in TB spine(X-rays,Ultrasound,CT,MRI)[M]//Tuberculosis of the spine.Singapore:Springer,2022:91-112. [7] LEE H M,KIM Y J,CHO J B,et al.Computer-aided diagnosis for determining sagittal spinal curvatures using deep learning and radiography[J].Journal of Digital Imaging,2022,35:846-859. [8] SONG Y,REN S,LU Y,et al.Deep learning-based automatic segmentation of images in cardiac radiography:a promising challenge[J].Computer Methods and Programs in Biomedicine,2022,220:106821. [9] LIU X,SONG L,LIU S,et al.A review of deep-learning-based medical image segmentation methods[J].Sustainability,2021,13(3):1224. [10] ATTALLAH O.Deep learning-based CAD system for COVID-19 diagnosis via spectral-temporal images[C]//Proceedings of the 12th International Conference on Information Communication and Management,2022:25-33. [11] QU B,CAO J,QIAN C,et al.Current development and prospects of deep learning in spine image analysis:a literature review[J].Quantiative Imaging in Medicine Surgery,2022,12(6):3454-3479. [12] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [13] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [14] SRIVASTAVA R K,GREFF K,SCHMIDHUBER J.Training very deep networks[C]//Advances in Neural Information Processing Systems,2015. [15] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [16] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [17] XIE S,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1492-1500. [18] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [19] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [20] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [21] BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [22] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969. [23] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:801-818. [24] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [25] DARGAN S,KUMAR M,AYYAGARI M R,et al.A survey of deep learning and its applications:a new paradigm to machine learning[J].Archives of Computational Methods in Engineering,2020,27(4):1071-1092. [26] RAK M,STEFFEN J,MEYER A,et al.Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI[J].Computer Methods and Programs in Biomedicine,2019,177:47-56. [27] QADRI S F,SHEN L,AHMAD M,et al.OP-convNet:a patch classification-based framework for CT vertebrae segmentation[J].IEEE Access,2021,9:158227-158240. [28] QADRI S F,SHEN L,AHMAD M,et al.SVseg:stacked sparse autoencoder-based patch classification modeling for vertebrae segmentation[J].Mathematics,2022,10(5):796. [29] KERVADEC H,DOLZ J,TANG M,et al.Constrained-CNN losses for weakly supervised segmentation[J].Medical Image Analysis,2019,54:88-99. [30] TAM C M,ZHANG D,CHEN B,et al.Holistic multitask regression network for multiapplication shape regression segmentation[J].Medical Image Analysis,2020,65:101783. [31] HONG Y,WEI B,HAN Z,et al.MMCL-Net:spinal disease diagnosis in global mode using progressive multi-task joint learning[J].Neurocomputing,2020,399:307-316. [32] HUANG M,ZHOU S,CHEN X,et al.Semi-supervised hybrid spine network for segmentation of spine MR images[J].arXiv:2203.12151,2022. [33] LAVDAS I,GLOCKER B,KAMNITSAS K,et al.Fully automatic,multiorgan segmentation in normal whole body magnetic resonance imaging(MRI),using classification forests(CFs),convolutional neural networks(CNNs),and a multi‐atlas(MA) approach[J].Medical Physics,2017,44(10):5210-5220. [34] IRIONDO C,PEDOIA V,MAJUMDAR S.Lumbar intervertebral disc characterization through quantitative MRI analysis:an automatic voxel‐based relaxometry approach[J].Magnetic Resonance in Medicine,2020,84(3):1376-1390. [35] SURI A,JONES B C,NG G,et al.A deep learning system for automated,multi-modality 2D segmentation of vertebral bodies and intervertebral discs[J].Bone,2021,149:115972. [36] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [37] CHEN H,DOU Q,WANG X,et al.3D fully convolutional networks for intervertebral disc localization and segmentation[C]//International Conference on Medical Imaging and Augmented Reality.Cham:Springer,2016:375-382. [38] LI X,DOU Q,CHEN H,et al.3D multi-scale FCN with random modality voxel dropout learning for intervertebral disc localization and segmentation from multi-modality MR images[J].Medical Image Analysis,2018,45:41-54. [39] ZENG G,ZHENG G.DSMS-FCN:a deeply supervised multi-scale fully convolutional network for automatic segmentation of intervertebral disc in 3D MR images[C]//International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging.Cham:Springer,2017:148-159. [40] DAS P,PAL C,ACHARYYA A,et al.Deep neural network for automated simultaneous intervertebral disc(IVDs) identification and segmentation of multi-modal MR images[J].Computer Methods and Programs in Biomedicine,2021,205:106074. [41] SEKUBOYINA A,KUKA?KA J,KIRSCHKE J S,et al.Attention-driven deep learning for pathological spine segmentation[C]//International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging.Cham:Springer,2017:108-119. [42] XIA L,XIAO L,QUAN G,et al.3D cascaded convolutional networks for multi-vertebrae segmentation[J].Current Medical Imaging,2020,16(3):231-240. [43] JANSSENS R,ZENG G,ZHENG G.Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018),2018:893-897. [44] AL ARIF S M M R,KNAPP K,SLABAUGH G.Fully automatic cervical vertebrae segmentation framework for X-ray images[J].Computer Methods and Programs in Biomedicine,2018,157:95-111. [45] LESSMANN N,VAN GINNEKEN B,DE JONG P A,et al.Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J].Medical Image Analysis,2019,53:142-155. [46] CHUANG C H,LIN C Y,TSAI Y Y,et al.Efficient triple output network for vertebral segmentation and identification[J].IEEE Access,2019,7:117978-117985. [47] REHMAN F,ALI SHAH S I,RIAZ M N,et al.A region-based deep level set formulation for vertebral bone segmentation of osteoporotic fractures[J].Journal of Digital Imaging,2020,33(1):191-203. [48] ZHANG D,CHEN B,LI S.Sequential conditional reinforcement learning for simultaneous vertebral body detection and segmentation with modeling the spine anatomy[J].Medical Image Analysis,2021,67:101861. [49] CHENG P,YANG Y,YU H,et al.Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net[J].Scientific Reports,2021,11(1):1-13. [50] 普钟,张俊华,黄昆,等.融合多注意力机制的脊椎图像分割方法[J].计算机应用研究,2023,40(4):1256-1262. PU Z,ZHANG J H,HUANG K,et al.Spinal image segmentation method with multi-attention[J].Application Research of Computers,2023,40(4):1256-1262. [51] ZHANG X,YANG Y,SHEN Y W,et al.SeUneter:channel attentive U-Net for instance segmentation of the cervical spine MRI medical image[J].Frontiers in Physiology,2022,13:2564. [52] PANG S,PANG C,ZHAO L,et al.SpineParseNet:spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation[J].IEEE Transactions on Medical Imaging,2020,40(1):262-273. [53] PANG S,PANG C,SU Z,et al.DGMSNet:spine segmentation for MR image by a detection-guided mixed-supervised segmentation network[J].Medical Image Analysis,2022,75:102261. [54] LI H,LUO H,HUAN W,et al.Automatic lumbar spinal MRI image segmentation with a multi-scale attention network[J].Neural Computing and Applications,2021,33(18):11589-11602. [55] ZHOU J,DAMASCENO P F,CHACHAD R,et al.Automatic vertebral body segmentation based on deep learning of Dixon images for bone marrow fat fraction quantification[J].Frontiers in Endocrinology,2020,11:612. [56] FANG Y,LI W,CHEN X,et al.Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks[J].European Radiology,2021,31(4):1831-1842. [57] NAZIR A,CHEEMA M N,SHENG B,et al.ECSU-Net:an embedded clustering sliced U-Net coupled with fusing strategy for efficient intervertebral disc segmentation and classification[J].IEEE Transactions on Image Processing,2021,31:880-893. [58] 程敏,沈林鹏,罗作煌.多维度卷积的两阶段脊柱三维实例分割方法[J].传感器与微系统,2022,41(12):134-138. CHENG M,SHEN L P,LUO Z H.Two-stage spine 3D instance segmentation method based on multi-dimensional convolutional[J].Transducer and Microsystem Technologies,2022,41(12):134-138. [59] 师文博,杨环,西永明,等.基于自注意力的双通路全脊柱X光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385-1392. SHI W B,YANG H,XI Y M,et al.Self-attention based dual pathway network for spine segmentation in X-ray image[J].Chinese Journal of Medical Physics,2022,39(11):1385-1392. [60] YANG Z,WANG Q,ZENG J,et al.RAU-Net:U-Net network based on residual multi-scale fusion and attention skip layer for overall spine segmentation[J].Machine Vision and Applications,2023,34(1):1-17. [61] LUC P,COUPRIE C,CHINTALA S,et al.Semantic segmentation using adversarial networks[J].arXiv:1611.08408,2016. [62] HAN Z,WEI B,MERCADO A,et al.Spine-GAN:semantic segmentation of multiple spinal structures[J].Medical Image Analysis,2018,50:23-35. [63] GONG H,LIU J,LI S,et al.Axial-SpineGAN:simultaneous segmentation and diagnosis of multiple spinal structures on axial magnetic resonance imaging images[J].Physics in Medicine & Biology,2021,66(11):115014. [64] HUANG Z,ZHAO R,LEUNG F H F,et al.Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing[J].IEEE Transactions on Medical Imaging,2022,41(7):1610-1624. [65] GOODFELLOW I,BENGIO Y,COURVILLE A.Deep learning[M].[S.l.]:MIT Press,2016. [66] LEI Y,LIU Y,DONG X,et al.Automatic multi-organ segmentation in thorax CT images using U-Net-GAN[C]//Medical Imaging 2019:Computer-Aided Diagnosis(SPIE,2019),2019:262-267. [67] DONG X,LEI Y,WANG T,et al.Automatic multiorgan segmentation in thorax CT images using U‐net‐GAN[J].Medical Physics,2019,46(5):2157-2168. [68] YANG C J,LIN C L,WANG C K,et al.Generative adversarial network(GAN) for automatic reconstruction of the 3D spine structure by using simulated bi-planar X-ray images[J].Diagnostics,2022,12(5):1121. [69] KER J,WANG L,RAO J,et al.Deep learning applications in medical image analysis[J].IEEE Access,2017,6:9375-9389. [70] ZHUANG F,QI Z,DUAN K,et al.A comprehensive survey on transfer learning[J].Proceedings of the IEEE,2020,109(1):43-76. [71] CHAKRABORTY S,TOMSETT R,RAGHAVENDRA R,et al.Interpretability of deep learning models:a survey of results[C]//2017 IEEE Smartworld,Ubiquitous Intelligence & Computing,Advanced & Trusted Computed,Scalable Computing & Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation(Smartworld/SCALCOM/UIC/ATC/CBDcom/IOP/SCI),2017:1-6. [72] FORD R A,PRICE W,NICHOLSON I I.Privacy and accountability in black-box medicine[J].Michigan Telecommications & Technology Law Review,2016,23(1). |
[1] | GOU Yuanmin, YAN Jianwei, ZHANG Fugui, SUN Chengyu, XU Yong. Research Progress on Vision System and Manipulator of Fruit Picking Robot [J]. Computer Engineering and Applications, 2023, 59(9): 13-26. |
[2] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[3] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[4] | SUN Aijing, WANG Guoqing. Neighbor Relation-Aware Graph Convolutional Network for Recommendation [J]. Computer Engineering and Applications, 2023, 59(9): 112-122. |
[5] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[6] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[7] | WANG Changhai, LIANG Hui, WANG Bo, CUI Xiaoxu. Graph Convolutional Index Trend Prediction Based on Correlation of Index Constituent Stocks [J]. Computer Engineering and Applications, 2023, 59(9): 319-328. |
[8] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[9] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[10] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[11] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[12] | SHI Lei, JI Qingyu, CHEN Qingwei, ZHAO Hengyi, ZHANG Junxing. Review of Research on Application of Vision Transformer in Medical Image Analysis [J]. Computer Engineering and Applications, 2023, 59(8): 41-55. |
[13] | YANG Chongluo, SHENG Long, WEI Zhongcheng, WANG Wei. Research on COVID-19 Text Entity Relation Extraction and Dataset Construction Methods [J]. Computer Engineering and Applications, 2023, 59(8): 97-104. |
[14] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[15] | LU Lin, JI Fanfan, YUAN Xiaotong. Sparse Binary Programming Method for Pruning of Randomly Initialized Neural Networks [J]. Computer Engineering and Applications, 2023, 59(8): 138-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||