Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (18): 1-13.DOI: 10.3778/j.issn.1002-8331.2305-0310
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Yangting, HUANG Deqi, WANG Dongwei, HE Jiajia
Online:
2023-09-15
Published:
2023-09-15
张阳婷,黄德启,王东伟,贺佳佳
ZHANG Yangting, HUANG Deqi, WANG Dongwei, HE Jiajia. Review on Research and Application of Deep Learning-Based Target Detection Algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13.
张阳婷, 黄德启, 王东伟, 贺佳佳. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2305-0310
[1] TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:1701-1708. [2] OUYANG W,WANG X.Joint deep learning for pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2013:2056-2063. [3] KANG K,LI H,YAN J,et al.T-CNN:tubelets with convolutional neural networks for object detection from videos[J].IEEE Transactions on Circuits Systems for Video Technology,2018,28(10):2896-2907. [4] 李明熹,林正奎,曲毅.计算机视觉下的车辆目标检测算法综述[J].计算机工程与应用,2019,55(24):20-28. LI M X,LIN Z K,QU Y.Survey of vehicle object detection algorithm in computer vision[J].Computer Engineering and Applications,2019,55(24):20-28. [5] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER B,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645. [6] UIJLINGS J,SANDE K,GEVERS T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [7] VEDALDI A,GULSHAN V,VARMA M,et al.Multiple kernels for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2009:606-613. [8] YU Y,ZHANG J,HUANG Y,et al.Object detection by context and boosted HOG-LBP[C]//European Conference on Computer Vision Workshop on PASCAL VOC,2010. [9] KRIZHEVSKY A,SUTSKEVER I,HINTON G E,et al.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [10] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [11] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [12] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [13] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].European Conference on Computer Vision,2014:346-361. [14] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [15] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015:91-99. [16] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,2016:21-37. [17] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [18] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [19] 王子琦,管振玉,朱轶昇,等.基于改进级联RCNN的遥感图像目标检测[J].计算机工程与设计,2023,44(1):194-202. WANG Z Q,GUAN Z Y,ZHU Y S,et al.Object detection algorithm of optical remote sensing image based on improved Cascada RCNN[J].Computer Engineering and Design,2023,44(1):194-202. [20] 赵珊,郑爱玲,刘子路,等.通道分离双注意力机制的目标检测算法[J].计算机科学与探索,2023,17(5):1112-1125. ZHAO S,ZHENG A L,LIU Z L,et al.Object detection algorithm based on channel separation dual attention mechanism[J].Journal of Frontiers of Computer Science and Technology,2023,17(5):1112-1125. [21] 林娜,黄韬,孙鹏林,等.优化Mask-RCNN的高分遥感影像建筑物提取[J].遥感信息,2022,37(3):1-6. LIN N,HUANG T,SUN P L,et al.Building extraction of high-resolution remote sensing imagery on optimized Mask-RCNN[J].Remote Sensing Information,2022,37(3):1-6. [22] SUN P,ZHANG R,JIANG Y,et al.Sparse R-CNN:end-to-end object detection with learnable proposals[J].arXiv:2021.01422,2020. [23] SERMANET P,NIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].arXiv:1312.6229,2013. [24] 陈欣,万敏杰,马超,等.采用多尺度特征融合SSD的遥感图像小目标检测[J].光学精密工程,2021,29(11):2672-2682. CHEN X,WAN M J,MA C,et al.Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J].Optics and Precision Engineering,2021,29(11):2672-2682. [25] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525. [26] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018. [27] JOCHER G,STOKEN A,BOROVEC J,?et al.YOLOv5:V3.1-bug?fixes?and performance improvements[EB/OL].(2020).doi:10.5281/zenodo.4154370,2020. [28] 张艳,孙晶雪,孙叶美,等.基于分割注意力与线性变换的轻量化目标检测[J].浙江大学学报(工学版),2023,57(6):1195-1204. ZHANG Y,SUN J X,SUN Y M,et al.Lightweight object detection based on split attention and linear transformation[J].Journal of Zhejiang University(Engineering Science),2023,57(6):1195-1204. [29] WANG C Y,BOCHKOVSKIY A,LIAO H.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696,2022. [30] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision,2014:818-833. [31] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations,2015. [32] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [33] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,2015:448-456. [34] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826. [35] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:770-778. [36] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.Squeezenet:alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]//International Conference on Learning Representations,2016. [37] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1800-1807. [38] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017. [39] SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4510-4520. [40] XIAN Y Z,MENG X L,JIAN S,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:6848-6856. [41] MA N,ZHANG X,ZHENG H T,et al.ShuffleNet v2:practical guidelines for efficient cnn architecture design[C]//European Conference on Computer Vision,2018:116-131. [42] ZOPH B,VASUDEVAN V,SHLENS J,et al.Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8697-8710. [43] WANG R J,LI X,AO S,et al.Pelee:a real-time object detection system on mobile devices[C]//Advances in Neural Information Processing Systems(NIPS),2018. [44] ZEILER M D,KRISHNAN D,TAYLOR G W,et al.Deconvolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2010:2528-2535. [45] 刘猛,刘劲,尹李君,等.基于迭代剪枝VGGNet的火星图像分类[J].液晶与显示,2023,38(4):507-514. LIU M,LIU J,YIN L J,et al.Martian image classification based on iterative pruning VGGNet[J].Chinese Journal of Liquid Crystal and Displays,2023,38(4):507-514. [46] 王文秀,郑鹏,徐颖杰,等.基于改进SqueezeNet的棒状物表面缺陷识别[J].电子测量与仪器学报,2023,37(4):240-249. WANG W X,ZHENG P,XU Y J,et al.Rods surfaces defect identification based on improved SqueezeNet[J].Journal of Electronic Measurement and Instrumentation,2023,37(4):240-249. [47] 黄英来,李宁,刘镇波,等.改进轻量卷积网络在葡萄病害叶片的分类方法[J/OL].哈尔滨理工大学学报:1-9[2023-06-01].http://kns.cnki.net/kcms/detail/23.1404.N.20230531. 1640.042.html HUANG Y L,LI N,LIU Z B,et al.Improved lightweight convolutional networks for classification of grape diseased leaves.[J/OL].Journal of Harbin University of Science and Technology:1-9[2023-06-01].http://kns.cnki.net/kcms/detail/23.1404.N.20230531.1640.042.html. [48] 王志强,于雪莹,杨晓婧,等.基于WGAN和MCA-MobileNet的番茄叶片病害识别[J].农业机械学报,2023,54(5):244-252. WANG Z Q,YU X Y,YANG X J,et al.Tomato leaf disease recognition based on WGAN and MCA-MobileNet[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):244-252. [49] 刘星,莫思特,张江,等.轻量化模型的PeleeNet_yolov3地表裂缝识别[J].哈尔滨工业大学学报,2023,55(4):81-89. LIU X,MO S T,ZHANG J,et al.PeleeNet_yolov3 surface crack identification with lightweight model[J].Journal of Harbin Institute of Technology,2023,55(4):81-89. [50] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [51] KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[R].Technical Report of University of Toronto,2009. [52] DENG J,DONG W,SOCHER R,et al.Imagenet:a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2009:248-255. [53] KRASIN I,DUERIG T,ALLDRIN N,et al.Openimages:a public dataset for large-scale multi-label and multi-class image classification[EB/OL].(2017).https://github.com/openimages. [54] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision,2014:740-755. [55] EVERINGHAM M,VAN G L,WILLIAMS C,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010(2):88. [56] TORRALBA A,FERGUS R,FREEMAN W T.A large data set for nonparametric object and scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970. [57] XIA G S,BAI X,DING J,et al.DOTA:a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:3974-3983. [58] YANG S,LUO P,LOY C C,et al.WIDER FACE:a face detection benchmark[C]//IEEE Conference on Computer Vision & Pattern Recognition,2016:5525-5533. [59] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision & Pattern Recognition,2012. [60] BERGMANN P,FAUSER M,SATTLEGGER D,et al.MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020. [61] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [62] GE Z,LIU S T,WANG F,et al.YOLOX:exceeding YOLO series in 2021[J].arXiv:2107.08430,2021. [63] TAN M,LE Q V.EfficientNet:rethinking model scaling for convolutional neural networks[J].arXiv:1905.11946,2019. [64] HOWARD A,SANDLER M,CHEN B,et al.Searching for MobileNetV3[C]//International Conference on Computer Vision,2020. [65] HAN K,WANG Y,TIAN Q,et al.GhostNet;more features rom cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020. [66] VIOLA P,JONES M J.Robust real-time face detection[J].International Journal of Computer Vision,2004:57(2):137-154. [67] NAJIBI M,SAMANGOUEI P,CHELLAPPA R,et al.SSh:single stage headless face detector[C]//Proceedings of the IEEE International Conference on Computer Vision,2004:4875-4884. [68] WU H Y,CHEN Q,YACHIDA M.A fuzzy-theory-based face detector[C]//Proceedings of the 13th International Conference on Pattern Recognition,Vinenna,Austria,1996:406-410. [69] JIANG H.Face detection with the faster R-CNN[C]//IEEE International Conference on Automatic Face and Gesture Recognition,2017:650-657. [70] BAZAREVSKY V,KARTYNNIK Y,VAKUNOV A,et al.BlazeFace:sub-millisecond neural face detection on mobile GPUs[J].arXiv:1907.05047,2019. [71] ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259. [72] 李俊文,张红英,韩宾.深层特征聚合引导的轻量级显著性目标检测[J/OL].计算机工程与应用:1-9[2023-05-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20220623.1617. 010.html. LI J W,ZHANG H Y,HAN B.Lightweight saliency object detection guided by deep feature aggregation[J/OL].Computer Engineering and Applications:1-9[2023-05-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20220623.1617. 010.html. [73] SHENG C,YANG L,XIANG G,et al.MobileFaceNets:efficient CNNs for accurate real-time face verification on mobile devices[J].arXiv:1804.07573,2018. [74] MAO J,XIAO T,JIANG Y,et al.What can help pedestrian detection?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3127-3136. [75] LI J,LIANG X,SHEN S,et al.Scale-aware fast R-CNN for pedestrian detection[J].IEEE Transactions on Multimedia,2017,20(4):985-996. [76] 陈宁,李梦璐,袁皓,等.遮挡情形下的行人检测方法综述[J].计算机工程与应用,2020,56(16):13-20. CHEN N,LI M L,YUAN H,et al.Review of pedestrian detection with occlusion[J].Computer Engineering and Applications,2020,56(16):13-20. [77] TIAN Y,LUO P,WANG X,et al.Deep learning strong parts for pedestrian detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1904-1912. [78] WANG R J,LI X,LING C X.Pelee:a real-time object detection system on mobile devices[C]//Conference on Neural Information Processing Systems,2018. [79] 张大奇,范慧颖,康宝生,等.基于改进U-Net网络的复杂背景下冰川遥感图像检测方法[J].应用基础与工程科学学报,2022,30(4):806-818. ZHANG D Q,FAN H Y,KANG B S,et al.Glacier identification from remote sensing image with shadows using an improved U-Net convolutional network[J].Journal of Basic Science and Engineering,2022,30(4):806-818. [80] 李坤亚,欧鸥,刘广滨,等.改进YOLOv5的遥感图像目标检测算法[J].计算机工程与应用,2023,59(9):207-214. LI K Y,OU O,LIU G B,et al.Target detection algorithm of remote sensing image based on improved YOLOv5[J].Computer Engineering and Applications,2023,59(9):207-214. [81] LI B,XIE X Y,WEI X X,et al.Ship detection and classification from optical remote sensing images:a survey[J].Chinese Journal of Aeronautics,2021,34(3):145-163. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[4] | LI Kunya, OU Ou, LIU Guangbin, YU Zefeng, LI Lin. Target Detection Algorithm of Remote Sensing Image Based on Improved YOLOv5 [J]. Computer Engineering and Applications, 2023, 59(9): 207-214. |
[5] | HUANG Lei, YANG Yuan, YANG Chengyu, YANG Wei, LI Yaohua. FS-YOLOv5:Lightweight Infrared Rode Target Detection Method [J]. Computer Engineering and Applications, 2023, 59(9): 215-224. |
[6] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[7] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[8] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[9] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[10] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[11] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[12] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[13] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[14] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[15] | WANG Xiaoming, MAO Yushi, XU Bin, WANG Zilei. Content Structure Preserved Image Style Transfer Method [J]. Computer Engineering and Applications, 2023, 59(6): 146-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||