WANG Wenxuan, LI Lu. Study of Multi-Factor Quantitative Stock Selection Based on SCDF Algorithm with Feature Permutation[J]. Computer Engineering and Applications, 2023, 59(16): 305-315.
[1] 曹维凡.基于Boosting算法的股票量化多因子选股研究[D].杭州:浙江工商大学,2021.
CAO W F.Research on stock quantitative multi-factor selection based on boosting algorithm[D].Hangzhou:Zhejiang Gongshang University,2021.
[2] 张虎,沈寒蕾,刘晔诚.基于自注意力神经网络的多因子量化选股问题研究[J].数理统计与管理,2020,39(3):556-570.
ZHANG H,SHEN H L,LIU Y C.The study on multi-factor quantitative stock selection based on self-attention neural network[J].Jouranl of Applied Statistics and Management,2020,39(3):556-570.
[3] ZHOU Z H,FENG J.Deep forest[J].arXiv:1702.08835,2017.
[4] 许美莹.深度森林在股指涨跌预测和投资策略中的应用[D].济南:山东大学,2019.
XU M Y.Application of deep forest in stock index trend predicting and investment strategy[D].Jinan:Shandong University,2019.
[5] 薛参观,燕雪峰.基于改进深度森林算法的软件缺陷预测[J].计算机科学,2018,45(8):160-165.
XUE C G,YAN X F.Software defect prediction based on improved deep forest algorithm[J].Computer Science,2018,45(8):160-165.
[6] 徐英杰,李国勇,洪文焕.基于多粒度级联多层梯度提升树的选票手写字符识别算法[J].计算机应用,2019,39(S1):26-30.
XU Y J,LI G Y,HONG W Y.Handwritten character recognition algorithm based on multi-grained cascade multi-layered gradient boosting decision trees[J].Journal of Computer Applications,2019,39(S1):26-30.
[7] 杜师帅.近红外光谱分类的深度森林方法及应用研究[D].北京:北京邮电大学,2019.
DU S S.Research on method and application of deep forest in near-infrared spectroscopy classification[D].Beijing:Beijing University of Posts and Telecommunications,2019.
[8] WANG H Y.Dense adaptive cascade forest:a densely connected deep ensemble for classification problems[J].arXiv:1804.10885,2018.
[9] YANG L,WU X Z,JIANG Y,et al.Multi-label learning with deep forest[J].arXiv:1911.06557,2019.
[10] 宫振华,王嘉宁,苏翀.一种加权的深度森林算法[J].计算机应用与软件,2019,36(2):274-278.
GONG Z H,WANG J N,SU C.A weighted deep forest algorithm[J].Computer Applications and Software,2019,36(2):274-278.
[11] 乔安,毛力,孙俊.基于改进深度森林的小目标检测算法[J].传感器与微系统,2020,39(5):125-128.
QIAO A,MAO L,SUN J.Small target detection algorithm based on improved deep forest[J].Transducer and Microsystem Technologies,2020,39(5):125-128.
[12] 周博文,皋军.特征重排序的加权深度森林[J].软件导刊,2021,20(9):7-13.
ZHOU B W,GAO J.Feature-reordered weighted deep forest[J].Software Guide,2021,20(9):7-13.
[13] 孟庆晏.基于大量因子的GBDT-SVM多层次选股模型研究[D].广州:华南理工大学,2019.
MENG Q Y.Research on GBDT-SVM multi-level stock selection model based on a large number of factors[D].Guangzhou:South China University of Technology,2019.
[14] 吕凯晨,闫宏飞,陈翀.基于沪深300成分股的量化投资策略研究[J].广西师范大学学报(自然科学版),2019,37(1):1-12.
LV K C,YAN H F,CHEN C.Quantitative investment strategy based on CSI 300[J].Journal of Guangxi Normal University(Natural Science Edition),2019,37(1):1-12.
[15] 李斌,邵新月,李玥阳.机器学习驱动的基本面量化投资研究[J].中国工业经济,2019(8):61-79.
LI B,SHAO X Y,LI Y Y.Research on machine learning driven quantamental investing[J].China Industrial Economics,2019(8):61-79.
[16] 王伦,李路.基于gcForest的多因子量化选股策略[J].计算机工程与应用,2020,56(15):86-91.
WANG L,LI L.Multi-factor quantitative stock selection strategy based on gcForest[J].Computer Engineering and Applications,2020,56(15):86-91.
[17] 李晨阳.基于CNN-LSTM的股票价格预测及量化选股研究[D].西安:西北大学,2021.
LI C Y.Research on stock price prediction and quantitative stock selection based on CNN-LSTM[D].Xi’an:Northwest University,2021.