Road Crack Model Based on Multi-Level Feature Fusion and Attention Mechanism
SONG Rongrong, WANG Caiyong, TIAN Qichuan, ZHANG Qi
1.School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2.Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing 100044, China
3.Schoo of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China
SONG Rongrong, WANG Caiyong, TIAN Qichuan, ZHANG Qi. Road Crack Model Based on Multi-Level Feature Fusion and Attention Mechanism[J]. Computer Engineering and Applications, 2023, 59(13): 281-288.
[1] Ministry of Transport.Statistical bulletin on the dervelopment of the transportation industry in 2020[EB/OL].(2021-05?17)[2022-02-15].https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html.
[2] ZHU Q B.Pavement crack detection algorithm based on image processing analysis[C]//Proceedings of the International Conference on Intelligent Human-Machine Systems and Cybernetics,2016:15-18.
[3] AKAGIC A,BUZA E,OMANOVIC S,et al.Pavement crack detection using Otsu thresholding for image segmentation[C]//Proceedings of the International Convention on Information and Communication Technology,Electronics and Microelectronics,2018:1092-1097.
[4] SONG Q,LIN G Y,MA J Q,et al.An edge-detection method based on adaptive canny algorithm and iterative segmentation threshold[C]//Proceedings of the International Conference on Control Science and Systems Engineering,2016:64-67.
[5] FERNANDEZ A,RODRIGUEZ-LOZANO F,VILLATORO R,et al.Efficient pavement crack detection and classification[J].EURASIP Journal on Image and Video Processing,2017(1):1-11.
[6] WU G F,SUN X M,ZHOU L P,et al.Research on morphological wavelet operator for crack detection of asphalt pavement[C]//Proceedings of the 2016 IEEE International Conference on Information and Automation,2016:1573-1577.
[7] 瞿中,鞠芳蓉,陈思琪.结构森林边缘检测与渗流模型相结合的混凝土表面裂缝检测[J].计算机科学,2018,45(11):288-291.
QU Z,JU F R,CHEN S Q.Concrete surface cracks detection combining structured forest edge detectionand percolation model[J].Computer Science,2018,45(11):288-291.
[8] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,2015:234-241.
[9] BADRINARAYANAN V,KENDALL A,CIPOLLA R,et al.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[10] CHEN T Y,CAI Z H,ZHAO X,et al.Pavement crack detection and recognition using the architecture of SegNet[J].Journal of Industrial Information Integration,2020,18:100144.
[11] LAU S,CHONG E,YANG X,et al.Automated pavement crack segmentation using U-Net-based convolutional neural network[J].IEEE Access,2020,8:114892-114899.
[12] ZOU Q,ZHANG Z,LI Q Q,et al.DeepCrack:learning hierarchical convolutional features for crack detection[J].IEEE Transactions on Image Processing,2019,28(3):1498-1512.
[13] MISRA DA,NALAMADA T,ARASANIPALAI A U,et al.Rotate to attend:convolutional triplet attention module[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision and Pattern Recognition,2021:3139-3148.
[14] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2980-2988.
[15] ZOU Q,CAO Y,LI Q Q,et al.CrackTree:automatic crack detection from pavement images[J].Pattern Recognition Letters,2012,33(3):227-238.
[16] K?NIG J,JENKINS M D,MANNION M,et al.Optimized deep encoder-decoder methods for crack segmentation[J].Digital Signal Processing,2021,108(10):29-37.
[17] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[18] WOO S,PARK J C,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision,2018:3-19.
[19] PARK J C,WOO S,LEE J Y,et al.BAM:bottleneck attention module[C]//Proceedings of the British Machine Vision Conference,2018:147-159.
[20] WANG Q L,WU B G,ZHU P H,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Conference on Applications of Computer Vision and Pattern Recognition,2020:11531-11539.
[21] XIE S N,TU Z W.Holistically-nested edge detection[J].International Journal of Computer Vision,2017,125(1):3-18.
[22] LIU Y,CHENG M M,HU X W,et al.Richer convolutional features for edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(8):1939-1946.