Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (11): 16-27.DOI: 10.3778/j.issn.1002-8331.2211-0377
• Research Hotspots and Reviews • Previous Articles Next Articles
DONG Gang, XIE Weicheng, HUANG Xiaolong, QIAO Yitian, MAO Qian
Online:
2023-06-01
Published:
2023-06-01
董刚,谢维成,黄小龙,乔逸天,毛骞
DONG Gang, XIE Weicheng, HUANG Xiaolong, QIAO Yitian, MAO Qian. Review of Small Object Detection Algorithms Based on Deep Learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
董刚, 谢维成, 黄小龙, 乔逸天, 毛骞. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2211-0377
[1] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2012,60:84-90. [2] GIRSHICK R B,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [3] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37:1904-1916. [4] GIRSHICK R B.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV),2015:1440-1448. [5] REN S,HE K,GIRSHICK R B,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39:1137-1149. [6] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [7] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [8] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [9] REDMON J,DIVVALA S K,GIRSHICK R B,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:779-788. [10] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:6517-6525. [11] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018. [12] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [13] LI C,LI L,JIANG H,et al.YOLOv6:a single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [14] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696,2022. [15] 刘洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37-48. LIU Y,HU Y W.Survey of small object detection algorithms based on deep learning[J].Computer Engineering and Applications,2021,57(2):37-48. [16] 员娇娇,胡永利,孙艳丰,等.基于深度学习的小目标检测方法综述[J].北京工业大学学报,2021,47(3):293-302. YUAN J J,HU Y L,SUN Y F,et al.Survey of small object detection methods based on deep learning[J].Journal of Beijing University of Technology,2021,47(3):293-302. [17] 李科岑,王晓强,林浩,等.深度学习中的单阶段小目标检测方法综述[J].计算机科学与探索,2022,16(1):41-58. LI K C,WANG X Q,LIN H,et al.Survey of one-stage small object detection methods in deep learning[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):41-58. [18] 张艳,张明路,吕晓玲,等.深度学习小目标检测算法研究综述[J].计算机工程与应用,2022,58(15):1-17. ZHANG Y,ZHANG M L,LYU X L,et al.Review of research on small target detection based on deep learning[J].Computer Engineering and Applications,2022,58(15):1-17. [19] TONG K,WU Y,ZHOU F.Recent advances in small object detection based on deep learning:a review[J].Image Vis Comput,2020,97:103910. [20] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems,2014:2672-2680. [21] LIU Y,SUN P,WERGELES N M,et al.A survey and performance evaluation of deep learning methods for small object detection[J].Expert Syst Appl,2021,172:114602. [22] CHEN G,WANG H,CHEN K,et al.A survey of the four pillars for small object detection:multiscale representation,contextual information,super-resolution,and region proposal[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52:936-953. [23] BELL S,ZITNICK C L,BALA K,et al.Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:2874-2883. [24] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision(ICCV),2017:764-773. [25] LIN T Y,GOYAL P,GIRSHICK R B,et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision(ICCV),2017:2999-3007. [26] SINGH B,NAJIBI M,DAVIS L S.SNIPER:efficient multi-scale training[J].arXiv:1805.09300,2018. [27] LI Z,PENG C,YU G,et al.DetNet:a backbone network for object detection[J].arXiv:1804.06215,2018. [28] CAI Z,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:6154-6162. [29] LIN T Y,DOLLáR P,GIRSHICK R B,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:936-944. [30] GUO C,FAN B,ZHANG Q,et al.AugFPN:improving multi-scale feature learning for object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:12592-12601. [31] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:8759-8768. [32] LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019. [33] WANG J,CHEN K,XU R,et al.CARAFE:content-aware reassembly of features[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:3007-3016. [34] GONG Y,YU X,DING Y,et al.Effective fusion factor in fpn for tiny object detection[C]//2021 IEEE Winter Conference on Applications of Computer Vision(WACV),2021:1159-1167. [35] GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[J].arXiv:2205.12740,2022. [36] WANG J,XU C,YANG W,et al.A normalized Gaussian Wasserstein distance for tiny object detection[J].arXiv:2110.13389,2021. [37] XU C,WANG J,YANG W,et al.RFLA:Gaussian receptive field based label assignment for tiny object detection[J].arXiv:2208.08738,2022. [38] TAN W,YAN B,BARE B.Feature super-resolution:make machine see more clearly[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:3994-4002. [39] LI J,LIANG X,WEI Y,et al.Perceptual generative adversarial networks for small object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:1951-1959. [40] BAI Y,ZHANG Y,DING M,et al.SOD-MTGAN:small object detection via multi-task generative adversarial network[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:206-221. [41] NOH J,BAE W,LEE W,et al.Better to follow,follow to be better:towards precise supervision of feature super-resolution for small object detection[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:9724-9733. [42] FANG X,FAN H,YANG M,et al.Small object detection in remote sensing images based on super-resolution[J].Pattern Recognit Lett,2021,153:107-112. [43] HAN J,DING J,LI J,et al.Align deep features for oriented object detection[J].IEEE Transactions on Geoscience and Remote Sensing,2020,60:1-11. [44] BASHIR S M A,WANG Y.Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network[J].Remote Sens,2021,13:1854. [45] WANG Y,BASHIR S M A,KHAN M,et al.Remote sensing image super-resolution and object detection:benchmark and state of the art[J].Expert Syst Appl,2021,197:116793. [46] MA C,ZHANG J Y,ZHOU J,et al.Learning series-parallel lookup tables for efficient image super-resolution[C]//Proceedings of the European Conference on Computer Vision(ECCV),2022:305-321. [47] MEI Y,FAN Y,ZHOU Y.Image super-resolution with non-local sparse attention[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:3516-3525. [48] XIA B,HANG Y,TIAN Y,et al.Efficient non-local contrastive attention for image super-resolution[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2022:2759-2767. [49] YANG C,HUANG Z,WANG N.QueryDet:cascaded sparse query for accelerating high-resolution small object detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2022:13658-13667. [50] AKYON F C,ALTINUC S O,TEMIZEL A.Slicing aided hyper inference and fine-tuning for small object detection[J].arXiv:2202.06934,2022. [51] KISANTAL M,WOJNA Z,MURAWSKI J,et al.Augmentation for small object detection[J].arXiv:1902. 07296,2019. [52] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42:386-397. [53] ZHANG F,JIAO L,LI L,et al.Multiresolution attention extractor for small object detection[J].arXiv:2006.05941,2020. [54] ZHU C,HE Y,SAVVIDES M.Feature selective anchor-free module for single-shot object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:840-849. [55] LIU W,LIAO S,REN W,et al.High-level semantic feature detection:a new perspective for pedestrian detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019:5182-5191. [56] YU X,GONG Y,JIANG N,et al.Scale match for tiny person detection[C]//2020 IEEE Winter Conference on Applications of Computer Vision(WACV),2020:1246-1254. [57] ZHANG S,ZHU X,LEI Z,et al.S3FD:single shot scale-invariant face detector[C]//2017 IEEE International Conference on Computer Vision(ICCV),2017:192-201. [58] HU P,RAMANAN D.Finding tiny faces[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:1522-1530. [59] ZHU C,TAO R,LUU K,et al.Seeing small faces from robust anchor’s perspective[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:5127-5136. [60] BAI Y,ZHANG Y,DING M,et al.Finding tiny faces in the wild with generative adversarial network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:21-30. [61] ZHANG Z,SHEN W,QIAO S,et al.Robust face detection via learning small faces on hard images[C]//2020 IEEE Winter Conference on Applications of Computer Vision(WACV),2020:1350-1359. [62] DING J,XUE N,XIA G,et al.Object detection in aerial images:a large-scale benchmark and challenges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44:7778-7796. [63] PANG J,LI C,SHI J,et al.R2-CNN:fast tiny object detection in large-scale remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57:5512-5524. [64] YANG X,YANG J,YAN J,et al.SCRDet:towards more robust detection for small,cluttered and rotated objects[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:8231-8240. [65] LI C,XU C,CUI Z,et al.Learning object-wise semantic representation for detection in remote sensing imagery[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2019:20-27. [66] YANG F,FAN H,CHU P,et al.Clustered object detection in aerial images[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:8310-8319. [67] HAN J,DING J,XUE N,et al.ReDet:a rotation-equivariant detector for aerial object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:2785-2794. [68] QIN R,LIU Q,GAO G,et al.MRDet:a multi-head network for accurate oriented object detection in aerial images[J].arXiv:2012.13135,2020. [69] YI J,WU P,LIU B,et al.Oriented object detection in aerial images with box boundary-aware vectors[C]//2021 IEEE Winter Conference on Applications of Computer Vision(WACV),2021:2149-2158. [70] WEI Z,LIANG D,ZHANG D,et al.Learning calibrated-guidance for object detection in aerial images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:2721-2733. [71] WANG D,ZHANG Q,XU Y,et al.Advancing plain vision transformer towards remote sensing foundation model[J].arXiv:2208.03987,2022. [72] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 Words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [73] SHAMSOLMOALI P,ZAREAPOOR M,GRANGER é,et al.Enhanced single-shot detector for small object detection in remote sensing images[C]//2022 IEEE International Geoscience and Remote Sensing Symposium,2022:1716-1719. [74] ZHANG Y,CAO J,ZHANG L,et al.A free lunch from ViT:adaptive attention multi-scale fusion Transformer for fine-grained visual recognition[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2021:3234-3238. |
[1] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[2] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[3] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[4] | CAI Zhengyi, ZHAO Jieyu, ZHU Feng. Single-Stage Object Detection with Fusion of Point Cloud and Image Feature [J]. Computer Engineering and Applications, 2023, 59(9): 140-149. |
[5] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[6] | XIE Chunhui, WU Jinming, XU Huaiyu. Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image [J]. Computer Engineering and Applications, 2023, 59(9): 198-206. |
[7] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[8] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[9] | ZHANG Zhaoyang, ZHANG Shang, WANG Hengtao, RAN Xiukang. Multi-Head Attention Detection of Small Targets in Remote Sensing at Multiple Scales [J]. Computer Engineering and Applications, 2023, 59(8): 227-238. |
[10] | LI Abiao, GUO Hao, QI Chang, AN Jubai. Dense Object Detection in Remote Sensing Images Under Complex Background [J]. Computer Engineering and Applications, 2023, 59(8): 247-253. |
[11] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[12] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[13] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[14] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[15] | SHI Yue, YU Wanjun, CHEN Ying. RGB-D Saliency Detection Based on Multi-Level Feature Fusion [J]. Computer Engineering and Applications, 2023, 59(7): 207-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||