ZHANG Man, CUI Wenquan. Multi-Window Change Point Detection Method Using Density Ratio Estimation[J]. Computer Engineering and Applications, 2023, 59(3): 84-93.
[1] JIANG F,ZHAO Z,SHAO X.Time series analysis of COVID-19 infection curve:a change-point perspective[J].arXiv:2007.04553,2020.
[2] AMINIKHANGHAHI S,COOK D J.A survey of methods for time series change point detection[J].Knowledge and Information Systems,2017,51(2):339-367.
[3] MONTANEZ G,AMIZADEH S,LAPTEV N.Inertial hidden Markov models:modeling change in multivariate time series[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2015.
[4] WANG Y,HUANG G,YANG J,et al.Change point detection with mean shift based on AUC from symmetric sliding windows[J].Symmetry,2020,12(4):599.
[5] 王阳阳.时间序列中多个变点的检测问题[J].现代商贸工业,2019(35).
WANG Y Y.Detection of multiple change points in time series[J].Modern Business and Trade Industry,2019(35).
[6] FOX A J.Outliers in time series[J].Journal of the Royal Statistical Society:Series B(Methodological),1972,34(3):350-363.
[7] 高桢.时间序列变化点检测算法研究及应用[D].济南:山东大学,2018.
GAO Z.Research and application of time series change point detection algorithm[D].Jinan:Shandong University,2018.
[8] BONDU A,BOULLé M.A supervised approach for change detection in data streams[C]//The 2011 International Joint Conference on Neural Networks,2011:519-526.
[9] DESOBRY F,DAVY M,DONCARLI C.An online kernel change detection algorithm[J].IEEE Transactions on Signal Processing,2005,53(8):2961-2974.
[10] AURET L,ALDRICH C.Change point detection in time series data with random forests[J].Control Engineering Practice,2010,18(8):990-1002.
[11] WANG K,ZHAO Y,XIONG Q,et al.Research on healthy anomaly detection model based on deep learning from multiple time-series physiological signals[J].Scientific Programming,2016.
[12] CHEON S,KIM J.Multiple change-point detection of multivariate mean vectors with the Bayesian approach[J].Computational Statistics & Data Analysis,2010,54(2):406-415.
[13] KAWAHARA Y,SUGIYAMA M.Sequential change-point detection based on direct density-ratio estimation[J].Statistical Analysis and Data Mining:The ASA Data Science Journal,2012,5(2):114-127.
[14] BASSEVILLE M,NIKIFOROV I V.Detection of abrupt changes:theory and application[M].Englewood Cliffs:Prentice Hall,1993.
[15] BRODSKY E,DARKHOVSKY B S.Nonparametric methods in change point problems[M].[S.l.]:Springer Science & Business Media,2013.
[16] SUGIYAMA M,SUZUKI T,KANAMORI T.Density ratio estimation in machine learning[M].[S.l.]:Cambridge University Press,2012.
[17] GRETTON A,SMOLA A,HUANG J,et al.Covariate shift by kernel mean matching[J].Dataset Shift in Machine Learning,2009,3(4):5.
[18] BICKEL S,BRüCKNER M,SCHEFFER T.Discriminative learning for differing training and test distributions[C]//Proceedings of the 24th International Conference on Machine Learning,2007:81-88.
[19] SUGIYAMA M,SUZUKI T,NAKAJIMA S,et al.Direct importance estimation for covariate shift adaptation[J].Annals of the Institute of Statistical Mathematics,2008,60(4):699-746.
[20] KANAMORI T,HIDO S,SUGIYAMA M.A least-squares approach to direct importance estimation[J].The Journal of Machine Learning Research,2009,10:1391-1445.
[21] YAMADA M,SUZUKI T,KANAMORI T,et al.Relative density-ratio estimation for robust distribution comparison[J].Neural Computation,2013,25(5):1324-1370.
[22] LIU S,YAMADA M,COLLIER N,et al.Change-point detection in time-series data by relative density-ratio estimation[J].Neural Networks,2013,43:72-83.
[23] MESSER M,KIRCHNER M,SCHIEMANN J,et al.A multiple filter test for the detection of rate changes in renewal processes with varying variance[J].The Annals of Applied Statistics,2014,8(4):2027-2067.
[24] WANG Q,XIE S,WANG Y,et al.Survival-convolution models for predicting COVID-19 cases and assessing effects of mitigation strategies[J].Frontiers in Public Health,2020,8:325.
[25] BOUCHIKHI I,FERRARI A,RICHARD C,et al.Non-parametric online change-point detection with kernel LMS by relative density ratio estimation[C]//2018 IEEE Statistical Signal Processing Workshop(SSP),2018:538-542.
[26] HUSHCHYN M,USTYUZHANIN A.Generalization of change-point detection in time series data based on direct density ratio estimation[J].Journal of Computational Science,2021:101385.
[27] SUGIYAMA M,SUZUKI T,ITOH Y,et al.Least-squares two-sample test[J].Neural Networks,2011,24(7):735-751.
[28] TAKEUCHI J,YAMANISHI K.A unifying framework for detecting outliers and change points from time series[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(4):482-492.
[29] SUNDARARAJAN R R,POURAHMADI M.Nonparametric change point detection in multivariate piecewise stationary time series[J].Journal of Nonparametric Statistics,2018,30(4):926-956.
[30] TRUONG C,OUDRE L,VAYATIS N.Selective review of offline change point detection methods[J].Signal Processing,2020,167:107299.