[1] DAS P,MCFIRATHT J,FANG Z,et al.Iris liveness detection competition (livdet-iris)-the 2020 edition[C]//2020 IEEE International Joint Conference on Biometrics(IJCB),2020:1-9.
[2] YAMBAY D,WALCZAK B,SCHUCKERS S,et al.LivDet-Iris 2015-iris liveness detection competition 2015[C]//IEEE International Conference on Identity,2017.
[3] DAUGMAN J.Wavelet demodulation codes,statistical independence,and pattern recognition[Z].Proc 2nd IMA-IP:Mathematical Methods,Algorithms,and Applications,2000:244-260.
[4] MCGRATH J,BOWYER K W,CZAJKA A.Open source presentation attack detection baseline for iris recognition[J].arXiv:1809.10172,2018.
[5] CZAJKA A,FANG Z,BOWYER K.Iris presentation attack detection based on photometric stereo features[C]//2019 IEEE Winter Conference on Applications of Computer Vision(WACV),2019:877-885.
[6] TROKIELEWICZ M,CZAJKA A,MACIEJEWICZ P.Presentation attack detection for cadaver iris[C]//2018 IEEE 9th International Conference on Biometrics Theory,Applications and Systems(BTAS),2018:1-10.
[7] SOLEYMANI S,DABOUEI A,DAWSON J,et al.Defending against adversarial iris examples using wavelet decomposition[C]//2019 IEEE 10th International Conference on Biometrics Theory,Applications and Systems(BTAS),2019:1-9.
[8] KUEHLKAMP A,PINTO A,ROCHA A,et al.Ensemble of multi-view learning classifiers for cross-domain iris presentation attack detection[J].IEEE Transactions on Information Forensics and Security,2018,14(6):1419-1431.
[9] CZAJKA A.Pupil dynamics for iris liveness detection[J].IEEE Transactions on Information Forensics and Security,2015,10(4):726-735.
[10] 宋平,黄玲,王云龙,等.基于计算光场成像的虹膜活体检测方法[J].自动化学报,2019,45(9):1701-1712.
SONG P,HUANG L,WANG Y L,et al.Iris liveness detection based on light field imaging[J].Acta Automatica Sinica,2019,45(9):1701-1712.
[11] 贾皓丽,沈建新,邢文元.基于Gabor滤波的虹膜活体检测[J].计算机应用与软件,2012,29(11):137-138.
JIA H L,SHEN J X,XING W Y.Iris activity detection based on Gabor filter[J].Computer Applications and Software,2012,29(11):137-138.
[12] 李志明.基于卷积神经网络的虹膜活体检测算法研究[J].计算机工程,2016,42(5):239-243.
LI Z M.Research on iris liveness detection algorithm based on convolutional neural network[J].Computer Engineering,2016,42(5):239-243.
[13] 刘明康,王宏民,李琦,等.增强型灰度图像空间实现虹膜活体检测[J].中国图象图形学报,2020,25(7):1421-1435.
LIU M K,WANG H M,LI Q,et al.Enhanced gray-level image space for iris liveness detection[J].Journal of Image and Graphics,2020,25(7):1421-1435.
[14] YAMBAY D,DOYLE J S,CZAJKA A,et al.LivDet-iris 2013—iris liveness detection competition 2013[C]//International Joint Conference on Biometrics,2014.
[15] YAMBAY D,BECKER B,KOHLI N,et al.LivDet iris 2017—iris liveness detection competition 2017[C]//2017 IEEE International Joint Conference on Biometrics(IJCB),2017:733-741.
[16] 周锐烨,沈文忠.PI-Unet:异质虹膜精确分割神经网络模型的研究[J].计算机工程与应用,2021,57(15):223-229.
ZHOU R Y,SHEN W Z.PI-Unet:research on precise iris segmentation neural network model for heterogeneous iris[J].Computer Engineering and Applications,2021,57(15):223-229.
[17] 晁静静,沈文忠,宋天舒.基于HOG和SVM的双眼虹膜图像的人眼定位算法[J].计算机工程与应用,2019,55(9):184-189.
CHAO J J,SHEN W Z,SONG T S.Eye location algorithm of binocular iris image based on HOG and cascade SVM[J].Computer Engineering and Applications,2019,55(9):184-189.
[18] 陈金鑫,沈文忠.基于EL-YOLO的虹膜图像人眼定位及分类算法[J].计算机工程与应用,2121,57(17):217-223.
CHEN J X,SHEN W Z.Human eye localization and classification algorithm based on EL-YOLO[J].Computer Engineering and Applications,2121,57(17):217-223.
[19] 滕童,沈文忠,毛云丰.基于级联神经网络的多任务虹膜快速定位方法[J].计算机工程与应用,2020,56(12):118-124.
TENG T,SHEN W Z,MAO Y F.Multi-task iris fast location method based on cascaded neural network[J].Computer Engineering and Applications,2020,56(12):118-124.
[20] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[21] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[22] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19.
[23] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[24] SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al. Striving for simplicity:the all convolutional net[J].arXiv:1412.6806,2014.