Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (23): 1-11.DOI: 10.3778/j.issn.1002-8331.2206-0154
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHU Yuhua, SI Yiyi, LI Zhihui
Online:
2022-12-01
Published:
2022-12-01
祝玉华,司艺艺,李智慧
ZHU Yuhua, SI Yiyi, LI Zhihui. Overview of Smoke and Fire Detection Algorithms Based on Deep Learning[J]. Computer Engineering and Applications, 2022, 58(23): 1-11.
祝玉华, 司艺艺, 李智慧. 基于深度学习的烟雾与火灾检测算法综述[J]. 计算机工程与应用, 2022, 58(23): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2206-0154
[1] KUANG H L,CHAN L L H,YAN H.Multi-class fruit detection based on multiple color channels[C]//2015 International Conference on Wavelet Analysis and Pattern Recognition(ICWAPR),2015:1-7. [2] LOWE D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision,2004,60(2):91-110. [3] LIENHART R,MAYDT J.An extended set of Haar-like features for rapid object detection[C]//International Conference on Image Processing,2002. [4] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image-Net classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012. [5] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [6] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [7] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [8] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [9] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015. [10] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [11] ZHANG S,WEN L,BIAN X,et al.Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4203-4212. [12] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [13] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [14] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [15] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[J].arXiv:1412.7062,2014. [16] FRIZZI S,KAABI R,BOUCHOUICHA M,et al.Convolutional neural network for video fire and smoke detection[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society,2016:877-882. [17] 冯路佳,王慧琴,王可,等.基于目标区域的卷积神经网络火灾烟雾识别[J].激光与光电子学进展,2020,57(16):83-91. FENG L J,WANG H Q,WANG K,et al.Convolutional neural network fire smoke detection based on target region[J].Laser & Optoelectronics Progress,2020,57(16):83-91. [18] YUAN F,ZHANG L,WAN B,et al.Convolutional neural networks based on multi-scale additive merging layers for visual smoke recognition[J].Machine Vision and Applications,2019,30(2):345-358. [19] JEON M,CHOI H S,LEE J,et al.Multi-scale prediction for fire detection using convolutional neural network[J].Fire Technology,2021:1-19. [20] FILONENKO A,KURNIANGGORO L,JO K H.Smoke detection on video sequences using convolutional and recurrent neural networks[C]//International Conference on Computational Collective Intelligence.Cham:Springer,2017:558-566. [21] NGUYEN M D,VU H N,PHAM D C,et al.Multistage real-time fire detection using convolutional neural networks and long short-term memory networks[J].IEEE Access,2021,9:146667-146679. [22] JI S,XU W,YANG M,et al.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,35(1):221-231. [23] 吴凡,王慧琴,王可.时空域深度学习火灾烟雾检测[J].液晶与显示,2021,36(8):1186-1195. WU F,WANG H Q,WANG K.Spatio-temporal deep learning fire smoke detection[J].Chinese Journal of Liquid Crystals and Displays,2021,36(8):1186-1195. [24] 陈俊周,汪子杰,陈洪瀚,等.基于级联卷积神经网络的视频动态烟雾检测[J].电子科技大学学报,2016,45(6):992-996. CHEN J Z,WANG Z J,CHEN H H,et al.Dynamic smoke detection using cascaded convolutional neural network for surveillance videos[J].Journal of University of Electronic Science and Technology of China,2016,45(6):992-996. [25] LUO Y,ZHAO L,LIU P,et al.Fire smoke detection algorithm based on motion characteristic and convolutional neural networks[J].Multimedia Tools and Applications,2018,77(12):15075-15092. [26] 殷亚萍,柴文,凌毅德,等.基于特征分析的卷积神经网络烟雾识别[J].无线电工程,2021,51(7):526-533. YIN Y P,CHAI W,LING Y D,et al.Convolutional neural network for smoke recognition based on feature analysis[J].Radio Engineering,2021,51(7):526-533. [27] 刘通,程江华,华宏虎,等.结合[YdUaVa]颜色模型和改进MobileNetV3的视频烟雾检测方法[J].国防科技大学学报,2021,43(5):80-85. LIU T,CHENG J H,HUA H H,et al.Video smoke detection method combining [YdUaVa] color model and improved MobileNetV3[J].Journal of National University of Defense Technology,2021,43(5):80-85. [28] RYU J,KWAK D.Flame detection using appearance-based pre-processing and convolutional neural network[J].Applied Sciences,2021,11(11):5138. [29] HU C,TANG P,JIN W D,et al.Real-time fire detection based on deep convolutional long-recurrent networks and optical flow method[C]//2018 37th Chinese Control Conference(CCC),2018:9061-9066. [30] 蒋珍存,温晓静,董正心,等.基于深度学习的VGG16图像型火灾探测方法研究[J].消防科学与技术,2021,40(3):375-377. JIANG Z C,WEN X J,DONG Z X,et al.Research on VGG16 image fire detection method based on deep learning[J].Fire Science and Technology,2021,40(3):375-377. [31] YIN Z,WAN B,YUAN F,et al.A deep normalization and convolutional neural network for image smoke detection[J].IEEE Access,2017,5:18429-18438. [32] XU Z,GUO Y,SALEH J H.Tackling small data challenges in visual fire detection:a deep convolutional generative adversarial network approach[J].IEEE Access,2020,9:3936-3946. [33] 卫鑫,武淑红,王耀力.基于深度卷积长短期记忆网络的森林火灾烟雾检测模型[J].计算机应用,2019,39(10):2883-2887. WEI X,WU S H,WANG Y L.Forest fire smoke detection model based on deep convolution long short-term memory network[J].Journal of Computer Applications,2019,39(10):2883-2887. [34] QIANG X,ZHOU G,CHEN A,et al.Forest fire smoke detection under complex backgrounds using TRPCA and TSVB[J].International Journal of Wildland Fire,2021,30(5):329-350. [35] HE L,GONG X,ZHANG S,et al.Efficient attention based deep fusion CNN for smoke detection in fog environment[J].Neurocomputing,2021,434:224-238. [36] 张坚鑫,郭四稳,张国兰,等.基于多尺度特征融合的火灾检测模型[J].郑州大学学报(工学版),2021,42(5):13-18. ZHANG J X,GUO S W,ZHANG G L,et al.Fire detection model based on multi-scale feature fusion[J].Journal of Zhengzhou University(Engineering Science),2021,42(5):13-18. [37] QIAN H,SHI F,CHEN W,et al.A fire monitoring and alarm system based on channel-wise pruned YOLOv3[J].Multimedia Tools and Applications,2021:1-19. [38] XU R,LIN H,LU K,et al.A forest fire detection system based on ensemble learning[J].Forests,2021,12(2):217. [39] 栗俊杰,毛鹏军,淡文慧,等.基于YOLOv2-Tiny的无人机火灾检测与云台跟踪研究[J].消防科学与技术,2022,41(1):108-112. LI J J,MAO P J,DAN W H,et al.Research on UAV fire detection and PTZ tracking based on YOLOv2-Tiny[J].Fire Science and Technology,2022,41(1):108-112. [40] 晋耀,张为.采用Anchor-Free网络结构的实时火灾检测算法[J].浙江大学学报(工学版),2020,54(12):2430-2436. JIN Y,ZHANG W.Real-time fire detection algorithm with Anchor-Free network architecture[J].Journal of Zhejiang University(Engineering Science),2020,54(12):2430-2436. [41] ZHANG Q,LIN G,ZHANG Y,et al.Wild land forest fire smoke detection based on Faster R-CNN using synthetic smoke images[J].Procedia Engineering,2018,211:441-446. [42] 孙婷婷.基于静态特征和动态行为的火灾检测模型[J].中国安全生产科学技术,2021,17(1):96-101. SUN T T.Fire detection model based on static characteristics and dynamic behavior[J].Journal of Safety Science and Technology,2021,17(1):96-101. [43] LIN G,ZHANG Y,XU G,et al.Smoke detection on video sequences using 3D convolutional neural networks[J].Fire Technology,2019,55(5):1827-1847. [44] 李澎林,章军伟,李伟.基于光流改进与YOLOv3的烟雾检测方法[J].浙江工业大学学报,2021,49(1):9-15. LI P L,ZHANG J W,LI W.Smoke detection method based on optical flow improvement and YOLOv3[J].Journal of Zhejiang University of Technology,2021,49(1):9-15. [45] PARK M J,KO B C.Two-step real-time night-time fire detection in an urban environment using static ELASTIC-YOLOv3 and temporal fire-tube[J].Sensors,2020,20(8):2202. [46] 谢书翰,张文柱,程鹏,等.嵌入通道注意力的YOLOv4火灾烟雾检测模型[J].液晶与显示,2021,36(10):1445-1453. XIE S H,ZHANG W Z,CHENG P,et al.Fire smoke detection model based on YOLOv4 with channel attention[J].Chinese Journal of Liquid Crystals and Displays,2021,36(10):1445-1453. [47] 刘丽娟,陈松楠.一种基于改进SSD的烟雾实时检测模型[J].信阳师范学院学报(自然科学版),2020,33(2):305-311. LIU L J,CHEN S N.Real-time smoke detection model based on improved SSD[J].Journal of Xinyang Normal University(Natural Science Edition),2020,33(2):305-311. [48] 高洁,王战红,刘纲.基于FSSD的微光烟雾检测方法[J].电子测量技术,2021,44(5):123-128. GAO J,WANG Z H,LIU G.Low light level smoke detection method based on FSSD[J].Electronic Measurement Technology,2021,44(5):123-128. [49] XU G,ZHANG Y,ZHANG Q,et al.Video smoke detection based on deep saliency network[J].Fire Safety Journal,2019,105:277-285. [50] ZHOU Y C,HU Z Z,YAN K X,et al.Deep learning-based instance segmentation for indoor fire load recognition[J].IEEE Access,2021,9:148771-148782. [51] KHAN S,MUHAMMAD K,HUSSAIN T,et al.Deepsmoke:deep learning model for smoke detection and segmentation in outdoor environments[J].Expert Systems with Applications,2021,182:115125. [52] PAN J,OU X,XU L.A collaborative region detection and grading framework for forest fire smoke using weakly supervised fine segmentation and lightweight faster-RCNN[J].Forests,2021,12(6):768. [53] KO B C,PARK J O,NAM J Y.Spatiotemporal bag-of-features for early wildfire smoke detection[J].Image and Vision Computing,2013,31(10):786-795. [54] Cair.Fire-Detection-Image-Dataset[EB/OL].[2022-04-10].https://github.com/cair/Fire-Detection-Image-Dataset. [55] GEETHA S,ABHISHEK C S,AKSHAYANAT C S.Machine vision based fire detection techniques:a survey[J].Fire Technology,2021,57(2):591-623. [56] CHINO D Y T,AVALHAIS L P S,RODRIGUES J F,et al.BoWFire:detection of fire in still images by integrating pixel color and texture analysis[C]//2015 28th SIBGRAPI Conference on Graphics,Patterns and Images,2015:95-102. [57] 余婕,田世祥,王伟,等.基于AHP-Bayes的城镇老旧小区动态智能化火灾风险评估模型——以上海市M小区为例[J].安全与环境工程,2021,28(5):10-17. YU J,TIAN S X,WANG W,et al.Dynamic intelligent fire risk assessment model for urban old community based on AHP-Bayes—taking old community M of Shanghai as an example[J].Safety and Environmental Engineering,2021,28(5):10-17. [58] 疏学明,颜峻,胡俊,等.基于Bayes网络的建筑火灾风险评估模型[J].清华大学学报(自然科学版),2020,60(4):321-327. SHU X M,YAN J,HU J,et al.Risk assessment model for building fires based on a Bayesian network[J].Journal of Tsinghua University(Science and Technology),2020,60(4):321-327. [59] 谢旭春.在建民用建筑火灾风险评估模型构建及应用[J].消防科学与技术,2020,39(8):1100-1103. XIE X C.Development and application of fire risk assessment model for civil buildings under construction[J].Fire Science and Technology,2020,39(8):1100-1103. [60] CRESWELL A,WHITE T,DUMOULIN V,et al.Generative adversarial networks:an overview[J].IEEE Signal Processing Magazine,2018,35(1):53-65. [61] HOWARD A,SANDLER M,CHU G,et al.Searching for MobileNetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:1314-1324. [62] LIU Z,LI J,SHEN Z,et al.Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2736-2744. [63] ZHAO Y,ZHANG H,ZHANG X,et al.Fire smoke detection based on target-awareness and depthwise convolutions[J].Multimedia Tools and Applications,2021:1-15. |
[1] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[2] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[3] | YANG Yongbo, LI Dong. Lightweight Helmet Wearing Detection Algorithm of Improved YOLOv5 [J]. Computer Engineering and Applications, 2022, 58(9): 201-207. |
[4] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[5] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[6] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[7] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[8] | WANG Hao, LEI Yinjie, CHEN Haonan. Real Time Traffic Sign Detection Algorithm Based on Improved YOLOV3 [J]. Computer Engineering and Applications, 2022, 58(8): 243-248. |
[9] | ZHAO Jielun, ZHANG Xingzhong, DONG Hongyue. Defect Detection in Transmission Line Based on Scale-Invariant Feature Pyramid Networks [J]. Computer Engineering and Applications, 2022, 58(8): 289-296. |
[10] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[11] | SUN Liujie, ZHAO Jin, WANG Wenju, ZHANG Yusen. Multi-Scale Transformer Lidar Point Cloud 3D Object Detection [J]. Computer Engineering and Applications, 2022, 58(8): 136-146. |
[12] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[13] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[14] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[15] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||