Image Super-Resolution with Light-Weighted Pyramid Pooling-Based Attention Network
FANG Jinsheng, ZHU Gupei
1.School of Computer Science and Engineering, Minnan Normal University, Zhangzhou, Fujian 363000, China
2.Fujian Province Key Laboratory of Data Science and Intelligence Application, Zhangzhou, Fujian 363000, China
[1] 李祥霞,谢娴,李彬,等.生成对抗网络在医学图像处理中的应用[J].计算机工程与应用,2021,57(18):24-37.
LI X X,XIE X,LI B,et al.Application of generative adversarial networks in medical image processing[J].Computer Engineering and Applications,2021,57(18):24-37.
[2] 张德,林青宇,郭茂祖.单幅图像超分辨重建的深度学习方法综述[J].计算机工程与应用,2021,57(22):28-41.
ZHANG D,LIN Q Y,GUO M Z.Review of single image super-resolution based on deep learning[J].Computer Engineering and Applications,2021,57(22):28-41.
[3] ZHOU B,YE D J,WEI W,et al.Alternating direction projections onto convex sets for super-resolution image reconstruction[J].Information Technology and Control,2020,49(1):179-190.
[4] LI B,ZHOU Y,ZHANG Y,et al.Depth image super-resolution based on joint sparse coding[J].Pattern Recognition Letters,2020:13021-13029.
[5] ALZUBAIDI L,ZHANG J,HUMAIDI A J,et al.Review of deep learning:concepts,CNN architectures,challenges,applications,future directions[J].Journal of Big Data,2021,8(1):53.
[6] 孙超文,陈晓.基于多尺度特征融合反投影网络的图像超分辨率重建[J].自动化学报,2021,47(7):1689-1700.
SUN C W,CHEN X.Multiscale feature fusion backprojection network for image super-resolution[J].Acta Automatica Sinica,2021,47(7):1689-1700.
[7] 刘璟,宋海川,黄建设,等.通道与空间注意力图像超分辨率网络[J].计算机工程与应用,2021,57(2):209-216.
LIU J,SONG H C,HUANG J S,et al.Channel and spatial attention image super-resolution network[J].Computer Engineering and Applications,2021,57(2):209-216.
[8] LUO X,XIE Y,ZHANG Y,et al.Latticenet:towards lightweight image super-resolution with lattice block[C]//Proceedings of the European Conference on Computer Vision,2020:272-289.
[9] MEI Y,FAN Y,ZHOU Y.Image super-resolution with non-local sparse attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:3517-3526.
[10] 唐家军,刘辉,胡雪影.功能型复合深度网络的图像超分辨率重建[J].计算机科学与探索,2020,14(8):1368-1379.
TANG J J,LIU H,HU X Y.Image super-resolution reconstruction of functional composite deep network[J].Journal of Frontiers of Computer Science and Technology,2020,14(8):1368-1379.
[11] 彭晏飞,高艺,杜婷婷,等.生成对抗网络的单图像超分辨率重建方法[J].计算机科学与探索,2020,14(9):1612-1620.
PENG Y F,GAO Y,DU T T,et al.Single image super-resolution reconstruction method for generative adversarial network[J].Journal of Frontiers of Computer Science and Technology,2020,14(9):1612-1620.
[12] DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307.
[13] XIN L,ORCHARD M T.New edge directed interpolation[J].IEEE Transactions on Image Processing,2001,10(10):1521-1527.
[14] DONG C,LOY C C,TANG X.Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European Conference on Computer Vision,2016:394-407.
[15] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[16] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016.
[17] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2017:136-144.
[18] TAI Y,YANG J,LIU X.Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3147-3155.
[19] ZHANG Y L,LI K P,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision,2018:286-301.
[20] LAI W S,HUANG J B,AHUJA N,et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:5835-5843.
[21] AHN N,KANG B,SOHN K A.Fast,accurate,and lightweight super-resolution with cascading residual network[C]//Proceedings of the European Conference on Computer Vision,2018:252-268.
[22] HUI Z,WANG X,GAO X.Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:723-731.
[23] HUI Z,GAO X,YANG Y,et al.Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia,2019:2024-2032.
[24] LIU J,TANG J,WU G.Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of the European Conference on Computer Vision,2020:41-55.
[25] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[26] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2881-2890.
[27] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[28] LIU J,ZHANG W,TANG Y,et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:2359-2368.
[29] AGUSTSSON E,TIMOFTE R.Ntire 2017 challenge on single image super-resolution:dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:126-135.
[30] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the British Machine Vision Conference,2012.
[31] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of the International Conference on Curves and Surfaces,2010:711-730.
[32] TIMOFTE R,DE SMET V,VAN GOOL L.A+:adjusted anchored neighborhood regression for fast super-
resolution[C]//Proceedings of the Asian Conference on Computer Vision,2014:111-126.
[33] HUANG J B,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:5197-5206.
[34] TAI Y,YANG J,LIU X,et al.MemNet:a persistent memory network for image restoration[C]//Proceedings of the IEEE International Conference on Computer Vision,2017.