XING Jinchao, PAN Guangzhen. Research on Improved YOLOv5s Sign Language Recognition Algorithm[J]. Computer Engineering and Applications, 2022, 58(16): 194-203.
[1] 米娜瓦尔·阿不拉,阿里甫·库尔班,解启娜,等.手语识别方法与技术综述[J].计算机工程与应用,2021,57(18):1-12.
MINAWAER A,ALIFU K,XIE Q N,et al.Review of sign language recognition methods and techniques[J].Computer Engineering and Applications,2021,57(18):1-12.
[2] WEN F,ZHANG Z X,HE T Y,et al.AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove[J].Nature Communications,2021,12(1):5378.
[3] LI K H,ZHOU Z Y,LEE C H.Sign transition modeling and a scalable solution to continuous sign language recognition for real-world applications[J].ACM Transactions on Accessible Computing,2016,8(2):1-23.
[4] AHMED M A,ZAIDAN B B,ZAIDAN A A,et al.Based on wearable sensory device in 3D-printed humanoid:a new real-time sign language recognition system[J].Measurement,2021,168:108431.
[5] BOUKDIR A,BENADDY M,ELLAHYANI A,et al.Isolated video-based Arabic sign language recognition using convolutional and recursive neural networks[J].Arabian Journal for Science and Engineering,2022,47:2187-2199.
[6] GUO D,ZHOU W G,WANG M,et al.Hierarchical LSTM for sign language translation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence,2018:6845-6852.
[7] CAMG?Z N C,KOLLER O,HADFIELD S,et al.Sign language transformers:joint end-to-end sign language recognition and translation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10020-10030.
[8] ZHANG S J,ZHANG Q.Sign language recognition based on global-local attention[J].Journal of Visual Communication and Image Representation,2021,80(7):103280.
[9] 于娟,罗舜.基于YOLOv5的违章建筑检测方法[J].计算机工程与应用,2021,57(20):236-244.
YU J,LUO S.Detection method of illegal building based on YOLOv5[J].Computer Engineering and Applications,2021,57(20):236-244.
[10] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition,2020.
[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference Computer Vision,2016:21-37.
[12] LIN T Y,DOLLáR P,GIRSHICK R B,et al.Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:936-944.
[13] MEI Y Q,FAN Y C,ZHANG Y L,et al.Pyramid attention networks for image restoration[J].arXiv:2004.13824,2020.
[14] LIU S T,DI H,WANG Y H.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019.
[15] TAN M,PANG R,LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10778-10787.
[16] 程婧怡,段先华,朱伟.改进YOLOv3的金属表面缺陷检测研究[J].计算机工程与应用,2021,57(19):252-258.
CHENG J Y,DUAN X H,ZHU W.Research on metal surface defect detection by improved YOLOv3[J].Computer Engineering and Applications,2021,57(19):252-258.
[17] WANG P,HUANG H,WANG M,et al.YOLOv5s-FCG:an improved YOLOv5 method for inspecting riders’ helmet wearing[J].Journal of Physics:Conference Series,2021,2024:012059.
[18] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision,Munich,2018:3-19.
[19] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 Conference on Computer Vision and Pattern Recognition,Seattle,2020.
[20] BERMAN M,TRIKI A R,BLASCHKO M B.The Lovasz-Softmax Loss:a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:4413-4421.
[21] 郭晓静,隋昊达.改进YOLOv3在机场跑道异物目标检测中的应用[J].计算机工程与应用,2021,57(8):249-255.
GUO X J,SUI H D.Application of improved YOLOv3 in foreign object debris target detection on airfield pavement[J].Computer Engineering and Applications,2021,57(8):249-255.
[22] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[23] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[24] 马立,巩笑天,欧阳航空.Tiny YOLOV3目标检测改进[J].光学精密工程,2020,28(4):988-995.
MA L,GONG X T,OUYANG H K.Improvement of Tiny YOLOV3 target detection[J].Optics and Precision Engineering,2020,28(4):988-995.