Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (15): 68-77.DOI: 10.3778/j.issn.1002-8331.2203-0310
• Research Hotspots and Reviews • Previous Articles Next Articles
MAO Zhihui, ZHU Jiali, WU Xin, LI Jun
Online:
2022-08-01
Published:
2022-08-01
茅智慧,朱佳利,吴鑫,李君
MAO Zhihui, ZHU Jiali, WU Xin, LI Jun. Review of YOLO Based Target Detection for Autonomous Driving[J]. Computer Engineering and Applications, 2022, 58(15): 68-77.
茅智慧, 朱佳利, 吴鑫, 李君. 基于YOLO的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2203-0310
[1] 中华人民共和国公安部.2021年全国机动车保有量达3.95亿,新能源汽车同比增59.25%[EB/OL].(2022-01-11)[2022-02-28].https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8322369&mtype. Ministry of Public Security of the People’s Republic of China.In 2021,the number of motor vehicles nationwide will reach 395 million,and the number of new energy vehicles will increase by 59.25% year-on-year[EB/OL].(2022-01-11)[2022-02-28].https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8322369&mtype. [2] SINGH S.Critical reasons for crashes investigated in the national motor vehicle crash causation survey[R].National Center for Statistics and Analysis,2015. [3] LUETTEL T,HIMMELSBACH M,WUENSCHE H J.Autonomous ground vehicles—concepts and a path to the future[J].Proceedings of the IEEE,2012,100:1831-1839. [4] 邓伟文,李江坤,任秉韬,等.面向自动驾驶的仿真场景自动生成方法综述[J].中国公路学报,2022,35(1):316-333. DENG W W,LI J K,REN B T,et al.A survey on automatic simulation scenario generation methods for autonomous driving[J].China Journal of Highway and Transport,2022,35(1):316-333. [5] 吕品,许嘉,李陶深,等.面向自动驾驶的边缘计算技术研究综述[J].通信学报,2021,42(3):190-208. LYU P,XU J,LI T S,et al.Survey on edge computing technology for autonomous driving[J].Journal on Communication,2021,42(3):190-208. [6] ZAMANAKOS G,TSOCHATZIDIS L,AMANATIADIS A,et al.A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving[J].Computers & Graphics,2021,99:153-181. [7] 申泽邦,雍宾宾,周庆国,等.无人驾驶原理与实践[M].北京:机械工业出版社,2019. SHEN Z B,YONG B B,ZHOU Q G,et al.The principle and practice of unmanned driving[M].Beijing:Machinery Industry Press,2019. [8] 全国汽车标准化技术委员会.汽车驾驶自动化分级:GB/T 40429—2021[EB/OL].(2021-09-11)[2021-12-05].http://www.catarc.org.cn/xinwen/show-3334.html. National Automotive Standardization Technical Committee.Automotive driving automation classification:GB/T 40429—2021[EB/OL].(2021-09-11)[2021-12-05].http://www.catarc.org.cn/xinwen/show-3334.html. [9] THORPE C,HERBERT M,KANADE T,et al.Toward autonomous driving:the CMU Navlab.II.architecture and systems[J].IEEE Expert,1991,6(4):44-52. [10] DICKMANNS E D,ZAPP A.Autonomous high speed road vehicle guidance by computer vision[J].IFAC Proceedings Volumes,1987,20(5):221-226. [11] 穆康乐.无人驾驶汽车发展现状及未来展望[J].电子技术与软件工程,2017(21):112-114. MU K L.Development status and future prospects of autonomous vehicles[J].Electronic Technology and Software Engineering,2017(21):112-114. [12] BUEHLER M,IAGNEMMA K,SINGH S.The DARPA urban challenge:autonomous vehicles in city traffic[M].[S.l.]:Springer,2009. [13] THRUN S,MONTEMERLO M,DAHLKAMP H,et al.Stanley:the robot that won the DARPA grand challenge[J].Journal of Field Robotics,2006,23(9):661-692. [14] CHEN S K,PARIKH J S.Developing a forward collision warning system simulation[C]//Proceedings of the IEEE Intelligent Vehicles Symposium 2000,Dearborn,MI,USA,5-5 Oct 2000:338-343. [15] 盖世汽车研究院.【自动驾驶】高级驾驶辅助系统(ADAS)产业报告(2021版)[EB/OL].(2021-08-13)[2021-12-13].https://auto.gasgoo.com/institute/2240.html. Gasgoo Research Institute.[Autonomous Driving] Advanced Driver Assistance System(ADAS) industry report(2021 Edition) [EB/OL].(2021-08-13)[2021-12-13].https://auto.gasgoo.com/institute/2240.html. [16] LE-ANH T,DE KOSTER M B M.A review of design and control of automated guided vehicle systems[J].European Journal of Operational Research,2006,171(1):1-23. [17] PADEN B,?áP M,YONG S Z,et al.A survey of motion planning and control techniques for self-driving urban vehicles[J].IEEE Transactions on Intelligent Vehicles,2016,1(1):33-55. [18] KUDERER M,GULATI S,BURGARD W.Learning driving styles for autonomous vehicles from demonstration[C]//2015 IEEE International Conference on Robotics and Automation(ICRA),Seattle,WA,USA,26-30 May 2015:2641-2646. [19] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105. [20] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[J].Advances in Neural Information Processing Systems,2014,27. [21] SCHWARTING W,ALONSO-MORA J,RUS D.Planning and decision-making for autonomous vehicles[J].Annual Review of Control,Robotics,and Autonomous Systems,2018,1:187-210. [22] VAN BRUMMELEN J,O’BRIEN M,GRUYER D,et al.Autonomous vehicle perception:the technology of today and tomorrow[J].Transportation Research Part C:Emerging Technologies,2018,89:384-406. [23] KUUTTI S,FALLAH S,KATSAROS K,et al.A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications[J].IEEE Internet of Things Journal,2018,5(2):829-846. [24] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [25] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [26] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [27] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28:91-99. [28] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[J].Advances in Neural Information Processing Systems,2016,29:379-387. [29] GHIASI G,LIN T Y,LE Q V.Nas-FPN:learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7036-7045. [30] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [31] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [32] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [33] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [34] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [35] ZHANG J,HUANG M,JIN X,et al.A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J].Algorithms,2017,10(4):127. [36] YANG W,ZHANG W.Real-time traffic signs detection based on YOLO network model[C]//2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC),Chongqing,China,29-30 Oct 2020:354-357. [37] DEWI C,CHEN R C,LIU Y T,et al.Yolo V4 for advanced traffic sign recognition with synthetic training data generated by various GAN[J].IEEE Access,2021,9:97228-97242. [38] MOHD-ISA W N,ABDULLAH M S,SARZIL M,et al.Detection of Malaysian traffic signs via modified YOLOv3 algorithm[C]//2020 International Conference on Data Analytics for Business and Industry:Way Towards a Sustainable Economy(ICDABI),Sakheer,Bahrain 26-27 Oct 2020:1-5. [39] MANGSHOR N N A,PAUDZI N P A M,IBRAHIM S,et al.A real-time malaysian traffic sign recognition using YOLO algorithm[C]//Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020.Singapore:Springer,2022:283-293. [40] 吕禾丰,陆华才.基于YOLOv5算法的交通标志识别技术研究[J].电子测量与仪器学报,2021,35(10):137-144. LV H F,LU H C.Research on traffic sign recognition technology based on YOLOv5 algorithm[J].Journal of Electronic Measurement and Instrumentation,2021,35(10):137-144. [41] JENSEN M B,NASROLLAHI K,MOESLUND T B.Evaluating state-of-the-art object detector on challenging traffic light data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:9-15. [42] POSSATTI L C,GUIDOLINI R,CARDOSO V B,et al.Traffic light recognition using deep learning and prior maps for autonomous cars[C]//2019 International Joint Conference on Neural Networks(IJCNN),Budapest,Hungary,14-19 July 2019:1-8. [43] GAO H,WANG W,YANG C,et al.Traffic signal image detection technology based on YOLO[C]//Journal of Physics:Conference Series,Guangzhou,China,2021. [44] KIM J,CHO H,HWANGBO M,et al.Deep traffic light detection for self-driving cars from a large-scale dataset[C]//2018 21st International Conference on Intelligent Transportation Systems(ITSC),Maui,HI,USA,4-7 Nov 2018:280-285. [45] 叶佳林,苏子毅,马浩炎,等.改进YOLOv3的非机动车检测与识别方法[J].计算机工程与应用,2021,57(1):194-199. YE J L,SU Z Y,MA H Y,et al.Improved YOLOv3 non-motor vehicles detection and recognition method[J].Computer Engineering and Applications,2021,57(1):194-199. [46] ZHOU T,JIANG K,XIAO Z,et al.Object detection using multi-sensor fusion based on deep learning[C]//19th COTA International Conference of Transportation Professionals,2019:5770-5782. [47] 张成标,童宝宏,程进,等.改进的Yolo_v2违章车辆检测方法[J].计算机工程与应用,2020,56(20):104-110. ZHANG C B,TONG B H,CHENG J,et al.Improved Yolo_v2 illegal vehicle detection method[J].Computer Engineering and Applications,2020,56(20):104-110. [48] CHEN S,LIN W.Embedded system real-time vehicle detection based on improved YOLO network[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),Chongqing,China,11-13 Oct 2019:1400-1403. [49] WU T H,WANG T W,LIU Y Q.Real-time vehicle and distance detection based on improved yolo v5 network[C]//2021 3rd World Symposium on Artificial Intelligence(WSAI),Guangzhou,China,18-20 June 2021:24-28. [50] LAN W,DANG J,WANG Y,et al.Pedestrian detection based on YOLO network model[C]//2018 IEEE International Conference on Mechatronics and Automation(ICMA),Changchun,China,2018:1547-1551. [51] 高宗,李少波,陈济楠,等.基于YOLO网络的行人检测方法[J].计算机工程,2018,44(5):215-219. GAO Z,LI S B,CHEN J N,et al.Pedestrian detection method based on YOLO network[J].Computer Engineering,2018,44(5):215-219. [52] 郝旭政,柴争义.一种改进的深度残差网络行人检测方法[J].计算机应用研究,2019,36(5):1569-1572. HAO X Z,CHAI Z Y.Improved pedestrian detection method based on depth residual network[J].Application Research of Computers,2019,36(5):1569-1572. [53] ZHANG C,LUO K,GU S,et al.Caps-YOLO:pedestrian detection method of complex posture combined with capsules network[J].Journal of Flow Visualization and Image Processing,2021,28(3):41-69. [54] LIU S,GENG Y,SONG Y,et al.Research on small target pedestrian detection algorithm based on improved YOLOv3[C]//International Conference on Genetic and Evolutionary Computing.Singapore:Springer,2021:203-214. [55] ZHANG Y,SHEN Y L,ZHANG J.An improved tiny-yolov3 pedestrian detection algorithm[J].Optik,2019,183:17-23 [56] ZHANG X,YANG W,TANG X,et al.A fast learning method for accurate and robust lane detection using two-stage feature extraction with YOLO v3[J].Sensors,2018,18(12):4308. [57] 崔文靓,王玉静,康守强,等.基于改进YOLOv3算法的公路车道线检测方法[J].自动化学报,2022,48(6):1560-1568. CUI W L,WANG Y J,KANG S Q,et al.Road lane line detection method based on improved YOLOv3 algorithm[J].Acta Automatica Sinica,2022,48(6):1560-1568. [58] JI G,ZHENG Y.Lane line detection system based on Improved YoloV3 algorithm[EB/OL].(2021-10-13)[2022-02-28].https://doi.org/10.21203/rs.3.rs-961172/v1. [59] 张翔,唐小林,黄岩军.道路结构特征下的车道线智能检测[J].中国图象图形学报,2021,26(1):123-134. ZHANG X,TANG X L,HUANG Y J.Intelligent detection of lane based on road structure characteristics[J].Journal of Image and Graphics,2021,26(1):123-134. [60] DENG T,WU Y.Simultaneous vehicle and lane detection via MobileNetV3 in car following scene[J].Plos One,2022,17(3):e0264551. |
[1] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[2] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[3] | LI Yanchen, ZHANG Xiaojun, ZHANG Minglu, SHEN Liangyi. Object Detection in Autonomous Driving Scene Based on Improved Efficientdet [J]. Computer Engineering and Applications, 2022, 58(6): 183-191. |
[4] | HE Yuzhe, HE Ning, ZHANG Ren, LIANG Yubo, LIU Xiaoxiao. Research on Imbalanced Training of Deep Learning Target Detection Model [J]. Computer Engineering and Applications, 2022, 58(5): 172-178. |
[5] | LIU Jia, BIAN Fangzhou, CHEN Dapeng, LI Weibin. Fingertip Detection Model Based on UGF-Net [J]. Computer Engineering and Applications, 2022, 58(5): 225-231. |
[6] | ZHANG Xinyue, JIANG Ailian. SSD Small Target Detection Algorithm Combining Feature Enhancement and Self-Attention [J]. Computer Engineering and Applications, 2022, 58(5): 247-255. |
[7] | LI Wenjing, XU Guowei, KONG Weigang, GUO Fengxiang, SONG Qingzeng. Research on Target Detection of Plant Leaf-Stem Intersection Based on Improved YOLOv4 [J]. Computer Engineering and Applications, 2022, 58(4): 221-228. |
[8] | HU Chunsheng, YAN Xiaopeng, WEI Hongxing, LI Guoli. Survey of Target Detection and Trajectory Prediction Based on Stereo Vision [J]. Computer Engineering and Applications, 2022, 58(3): 50-65. |
[9] | XING Yongxin, SUN Youdong, WANG Tianyi. Individual Recognition of Dairy Cow Based on Improved SSD Algorithm [J]. Computer Engineering and Applications, 2022, 58(2): 208-214. |
[10] | ZHANG Liyi, WU Wenhong, NIU Hengmao, SHI Bao, DUAN Kaibo, SU Chenyang. Summary of Application Research on Helmet Detection Algorithm Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(16): 1-17. |
[11] | ZHANG Yan, ZHANG Minglu, LYU Xiaoling, GUO Ce, JIANG Zhihong. Review of Research on Small Target Detection Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(15): 1-17. |
[12] | ZHANG Benkang, HU Bin. Neural Network for Moving Small Target Pedestrian Detection Based on Episodic Memory [J]. Computer Engineering and Applications, 2022, 58(15): 169-183. |
[13] | LIU Xin, HUANG Jin, YANG Tao, WANG Qing. Improved Small Object Detection for UAV Acquisition Based on CenterNet [J]. Computer Engineering and Applications, 2022, 58(14): 96-104. |
[14] | ZHU Xingdong, WANG Ding, FAN Jiali, WANG Zheng, HUANG Kui. Multitarget Detection Based on Enhanced YOLOv3 in Complex Scenarios [J]. Computer Engineering and Applications, 2022, 58(13): 177-184. |
[15] | LI Fan, HU Weiping, LIU Beibei, LIU Yuge. NVIDIA TX2-Based Inkjet Character Detection Algorithm [J]. Computer Engineering and Applications, 2022, 58(13): 210-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||