QIU Tianheng, WANG Ling, WANG Peng, BAI Yan’e. Research on Object Detection Algorithm Based on Improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73.
[1] 罗会兰,陈鸿坤.基于深度学习的目标检测研究综述[J].电子学报,2020,48(6):1230-1239.
LUO H L,CHEN H K.Survey of object detection based on deep learning[J].Acta Electronica Sinica,2020,48(6):1230-1239.
[2] 王迪聪,白晨帅,邬开俊.基于深度学习的视频目标检测综述[J].计算机科学与探索,2021,15(9):1563-1577.
WANG D C,BAI C S,WU K J.Survey of video object detection based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(9):1563-1577.
[3] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV),2015:1440-1448.
[4] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV),2017:2980-2988.
[5] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:779-788.
[6] 王燕妮,余丽仙.注意力与多尺度有效融合的SSD目标检测算法[J].计算机科学与探索,2022,16(2):438-447.
WANG Y N,YU L X.SSD object detection algorithm with effective fusion of attention and multiscale[J].Journal of Frontiers of Computer Science and Technology,2022,16(2):438-447.
[7] 沈震宇,朱昌明,王喆.基于MAML算法的YOLOv3目标检测模型[J].华东理工大学学报(自然科学版),2022,48(1):112-119.
SHEN Z Y,ZHU C M,WANG Z.YOLOv3 object detection model based on MAML algorithm[J].Journal of East China University of Science and Technology,2022,48(1):112-119.
[8] 谭显东,彭辉.改进YOLOv5的SAR图像舰船目标检测[J].计算机工程与应用,2022,58(4):247-254.
TAN X D,PENG H.Improved YOLOv5 ship target detection in SAR image[J].Computer Engineering and Applications,2022,58(4):247-254.
[9] 王兵,乐红霞,李文璟,等.改进YOLO轻量化网络的口罩检测算法[J].计算机工程与应用,2021,57(8):62-69.
WANG B,LE H X,LI W J,et al.Mask detection algorithm based on improved YOLO lightweight network[J].Computer Engineering and Applications,2021,57(8):62-69.
[10] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014.
[11] HE K,ZHANG X,SUN S R A J.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[12] HOWARD A G.MobileNets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704. 04861,2017.
[13] ZHANG X,ZHOU X,SUN M L.ShuffleNet:An extr-emely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:6848-6856.
[14] HAN K,WANG Y,TIAN Q,et al.GhostNet:More features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:1577-1586.
[15] 杨小冈,高凡,卢瑞涛,等.基于改进YOLOv5的轻量化航空目标检测方法[J/OL].信息与控制:1-7(2021-09-27)[2022-01-22].http://kns.cnki.net/kcms/detail/21.1138.TP.
20210927.1729.002.htm.
YANG X G,GAO F,LU R T,et al.Lightweight aerial object detection method based on improved YOLOv5[J/OL].Information and Control:1-7(2021-09-27)[2022-01-22].http://kns.cnki.net/kcms/detail/21.1138.TP.20210927.1729.
002.htm.
[16] 林森,刘美怡,陶志勇.采用注意力机制与改进YOLOv5的水下珍品检测[J].农业工程学报,2021,37(18):307-314.
LIN S,LIU M Y,TAO Z Y.Detection of underwater treasures using attention mechanism and improved YOLOv5[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(18):307-314.
[17] 彭成,张乔虹,唐朝晖,等.基于YOLOv5增强模型的口罩佩戴检测方法研究[J].计算机工程,2022(4):39-49.
PENG C,ZHANG Q H,TANG Z H,et al.A face mask wearing detection method based on YOLOv5 enhancement model[J].Computer Engineering,2022(4):39-49.
[18] 钱坤,李晨瑄,陈美杉,等.基于YOLOv5的舰船目标及关键部位检测算法[J].系统工程与电子技术,2022(6):1823-1832.
QIAN K,LI C X,CHEN M S,et al.Ship target and key parts detection algorithm based on YOLOv5[J].Systems Engineering and Electronics,2022(6):1823-1832.
[19] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:8759-8768.
[20] TAN M X,PANG R.EfficientDet:Scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:10778-10787.