Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (13): 36-47.DOI: 10.3778/j.issn.1002-8331.2112-0405
• Research Hotspots and Reviews • Previous Articles Next Articles
LIN Meng, ZHOU Gang, YANG Yawei, SHI Jun
Online:
2022-07-01
Published:
2022-07-01
林猛,周刚,杨亚伟,石军
LIN Meng, ZHOU Gang, YANG Yawei, SHI Jun. Survey of Object Detection Methods Under Adverse Weather Conditions[J]. Computer Engineering and Applications, 2022, 58(13): 36-47.
林猛, 周刚, 杨亚伟, 石军. 特殊天气条件下的目标检测方法综述[J]. 计算机工程与应用, 2022, 58(13): 36-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2112-0405
[1] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:886-893. [2] VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001. [3] TIAN S,PAN Y,HUANG C,et al.Text flow:A unified text detection system in natural scene images[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:4651-4659. [4] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768. [5] NOH H,HONG S,HAN B.Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1520-1528. [6] KANG K,LI H,YAN J,et al.T-CNN:Tubelets with convolutional neural networks for object detection from videos[J].IEEE Transactions on Circuits and Systems for Video Technology,2017,28(10):2896-2907. [7] KRIZHEVSKY A,SUTSKEVER I,GEOFFREY E H.Image net classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105. [8] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [9] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [10] REDMON J,FARHADI A.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision,2016:21-37. [12] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [13] ZOU Z,SHI Z,GUO Y,et al.Object detection in 20 years:A survey[J].arXiv:1905.05055,2019. [14] AGARWAL S,TERRAIL J O D,JURIE F J A P A.Recent advances in object detection in the age of deep convolutional neural networks[J].arXiv:1809.03193,2018. [15] ZHAO Z Q,ZHENG P,XU S T,et al.Object detection with deep learning:A review[J].IEEE Transaction on Neural Networks and Learning Systems,2019,30(11):3212-3232. [16] LIU L,OUYANG W,WANG X,et al.Deep learning for generic object detection:A survey[J].International Journal of Computer Vision,2020,128(2):261-318. [17] 陈飞,刘云鹏,李思远.复杂环境下的交通标志检测与识别方法综述[J].计算机工程与应用,2021,57(16):65-73. CHEN F,LIU Y P,LI S Y.Survey of traffic sign detection and recognition methods in complex environment[J].Computer Engineering and Applications,2021,57(16):65-73. [18] 董天天,曹海啸,阚希,等.复杂天气下交通场景多目标识别方法研究[J].信息通信,2020(11):72-74. DONG T T,CAO H X,KAN X,et al.Multi target recognition method of traffic scene in complex weather[J].Information & Communications,2020(11):72-74. [19] LIU W,HOU X,DUAN J,et al.End-to-end single image fog removal using enhanced cycle consistent adversarial networks[J].IEEE Transactions on Image Processing,2020,29:7819-7833. [20] ZHAO S,ZHANG L,HUANG S,SHEN Y,et al.Dehazing evaluation:Real?world benchmark datasets,criteria,and baselines[J].IEEE Transactions on Image Processing,2020,29:6947-6962. [21] TAREL J P,HAUTIERE N,CORD A,et al.Improved visibility of road scene images under heterogeneous fog[C]//Proceedings of the 2010 IEEE Intelligent Vehicles Symposium,2010:478-485. [22] TAREL J P,HAUTIERE N,CARAFFA L,et al.Vision enhancement in homogeneous and heterogeneous fog[J].IEEE Intelligent Transportation Systems Magazine,2012,4(2):6-20. [23] ANCUTI C,ANCUTI C O,DE VLEESCHOUWER C.D-HAZY:A dataset to evaluate quantitatively dehazing algorithms[C]//Proceedings of the 2016 IEEE International Conference on Image Processing(ICIP),2016:2226-2230. [24] ANCUTI C,ANCUTI C O,TIMOFTE R,et al.I-HAZE:A dehazing benchmark with real hazy and haze-free indoor images[C]//Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems,2018:620-631. [25] ANCUTI C O,ANCUTI C,TIMOFTE R,et al.O-HAZE:A dehazing benchmark with real hazy and haze-free outdoor images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:754-762. [26] LI B,REN W,FU D,et al.Benchmarking single-image dehazing and beyond[J].IEEE Transactions on Image Processing,2018,28(1):492-505. [27] HAHNER M,DAI D,SAKARIDIS C,et al.Semantic understanding of foggy scenes with purely synthetic data[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference(ITSC),2019:3675-3681. [28] SAKARIDIS C,DAI D,GOOL L.Semantic foggy scene understanding with synthetic data[J].International Journal of Computer Vision,2018,126(9):973-992. [29] LIU Y F,JAW D W,HUANG S C,et al.DesnowNet:Context-aware deep network for snow removal[J].IEEE Transactions on Image Processing,2018,27(6):3064-3073. [30] HU X,FU C W,ZHU L,et al.Depth-attentional features for single-image rain removal[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8022-8031. [31] WANG T,YANG X,XU K,et al.Spatial attentive single-image deraining with a high quality real rain dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:12270-12279. [32]?ISRA?L?H,?KASTEN?F.Koschmieders?theorie?der?horizontalen sichtweite[M]//Die Sichtweite im Nebel und die M?glichkeien ihrer künstlichen Beeinflussung.Wiesbaden:VS Verlag?für?Sozialwissenschaften,1959:7-10. [33] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:3213-3223. [34] WRENNINGE M,UNGER J.Synscapes:A photorealistic synthetic dataset for street scene parsing[J].arXiv:1810. 08705,2018. [35] GARG K,NAYAR S K.Vision and rain[J].International Journal of Computer Vision,2007,75(1):3-27. [36] REN W,LIU S,ZHANG H,et al.Single image dehazing via multi-scale convolutional neural networks[C]//Proceedings of the European Conference on Computer Vision,2016:154-169. [37] SILBERMAN N,HOIEM D,KOHLI P,et al.Indoor segmentation and support inference from RGBD images[C]//Proceedings of the European Conference on Computer Vision,2012:746-760. [38] TREMBLAY M,HALDER S,DE CHARETTE R,et al.Rain rendering for evaluating and improving robustness to bad weather[J].International Journal of Computer Vision,2021,129(2):341-360. [39] CAESAR H,BANKITI V,LANG A H,et al.NuScenes:A multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11621-11631. [40] HALDER S,LALONDE J F,CHARETTE R D.Physics-based rendering for improving robustness to rain[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10203-10212. [41] DE CHARETTE R,TAMBURO R,BARNUM P C,et al.Fast reactive control for illumination through rain and snow[C]//Proceedings of the 2012 IEEE International Conference on Computational Photography(ICCP),2012:1-10. [42] ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1125-1134. [43] HUANG S W,LIN C T,CHEN S P,et al.AugGAN:Cross domain adaptation with GAN-based data augmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:718-731. [44] ZHAI L,JUEFEI-XU F,GUO Q,et al.It’s raining cats or dogs? adversarial rain attack on DNN perception[J].arXiv:2009.09205,2020. [45] SHAO Y,LI L,REN W,et al.Domain adaptation for image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:2808-2817. [46] YASARLA R,SINDAGI V A,PATEL V M.Syn2Real transfer learning for image deraining using Gaussian processes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:2726-2736. [47] LI Y,YOU S,BROWN M S,et al.Haze visibility enhancement:A survey and quantitative benchmarking[J].Computer Vision and Image Understanding,2017,165:1-16. [48] XU Y,WEN J,FEI L,et al.Review of video and image defogging algorithms and related studies on image restoration and enhancement[J].IEEE Access,2015,4:165-188. [49] SINGH D,KUMAR V J.A comprehensive review of computational dehazing techniques[J].Archives of Computational Methods in Engineering,2019,26(5):1395-1413. [50] GUI J,CONG X,CAO Y,et al.A comprehensive survey on image dehazing based on deep learning[J].arXiv:2106.03323,2021. [51] WANG H,WU Y,LI M,et al.A survey on rain removal from video and single image[J].arXiv:1909.08326,2019. [52] HE K,SUN J,TANG X J,et al.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(12):2341-2353. [53] HE K,SUN J,TANG X J,et al.Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,35(6):1397-1409. [54] PENG Y T,LU Z,CHENG F C,et al.Image haze removal using air light white correction,local light filter,and aerial perspective prior[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,30(5):1385-1395. [55] YANG D,SUN J.Proximal dehaze-net:A prior learning-based deep network for single image dehazing[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:702-717. [56] YANG W,TAN R T,WANG S,et al.Single image deraining:From model-based to data-driven and beyond[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(11):4059-4077. [57] LI B,PENG X,WANG Z,et al.An all-in-one network for dehazing and beyond[J].arXiv:1707.06543,2017. [58] HUANG S C,LE T H,JAW D W.DSNet:Joint semantic learning for object detection in inclement weather conditions[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2020,43(8):2623-2633. [59] LI C,GUO C,GUO J,et al.PDR-Net:Perception-inspired single image dehazing network with refinement[J].IEEE Transactions on Multimedia,2019,22(3):704-716. [60] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].Advance in Neural Information Processing Systems,2015,28:91-99. [61] ZHANG H,SINDAGI V,PATEL V M,et al.Image de-raining using a conditional generative adversarial network[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,30(11):3943-3956. [62] FU X,LIANG B,HUANG Y,et al.Lightweight pyramid networks for image deraining[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(6):1794-1807. [63] FAN Z,WU H,FU X,et al.Residual-guide feature fusion network for single image deraining[J].arXiv:1804.07493,2018. [64] JIANG K,WANG Z,YI P,et al.Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:8346-8355. [65] LI S,ARAUJO I B,REN W,et al.Single image deraining:A comprehensive benchmark analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3838-3847. [66] PAN S J,YANG Q J,ENGINEERING D.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2009,22(10):1345-1359. [67] WEISS K,KHOSHGOFTAAR T M,WANG D J.A survey of transfer learning[J].Journal of Big data,2016,3(1):1-40. [68] GOPALAN R,LI R,CHELLAPPA R.Domain adaptation for object recognition:An unsupervised approach[C]//Proceedings of the 2011 International Conference on Computer Vision,2011:999-1006. [69] MANSOUR Y,MOHRI M.Domain adaptation:Learning bounds and algorithms[J].arXiv:0902.3430,2009. [70] BEN-DAVID S,BLITZER J,CRAMMER K,et al.A theory of learning from different domains[J].Machine Learning,2010,79(1):151-175. [71] CHEN Y,LI W,SAKARIDIS C,et al.Domain adaptive Faster R-CNN for object detection in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3339-3348. [72] CHEN Y,WANG H,LI W,et al.Scale-aware domain adaptive Faster R-CNN[J].International Journal of Computer Vision,2021,129(7):2223-2243. [73] HE Z,ZHANG L.Multi-adversarial Faster R-CNN for unrestricted object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6668-6677. [74] ZHU X,PANG J,YANG C,et al.Adapting object detectors via selective cross-domain alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:687-696. [75] SAITO K,USHIKU Y,HARADA T,et al.Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6956-6965. [76] ZHAO G,LI G,XU R,et al.Collaborative training between region proposal localization and classification for domain adaptive object detection[C]//Proceedings of the European Conference on Computer Vision,2020:86-102. [77] XIE R,WANG J.Multi-level domain adaptive learning for cross-domain detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019. [78] PAN Y S,MA A J,GAO Y,et al.Multi-scale adversarial cross-domain detection with robust discriminative lear-ning[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:1324-1332. [79] SHEN Z,MAHESHWARI H,YAO W,et al.SCL:Towards accurate domain adaptive object detection via gradient detach based stacked complementary losses[J].arXiv:1911.02559,2019. [80] CAI Q,PAN Y,NGO C W,et al.Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:11457-11466. [81] TARVAINEN A,VALPOLA H J.Mean teachers are better role models:Weight-averaged consistency targets improve semi-supervised deep learning results[J].arXiv:1703.01780,2017. [82] DENG J,LI W,CHEN Y,et al.Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:4091-4101. [83] HNEWA M,RADHA H.Multiscale domain adaptive yolo for cross-domain object detection[C]//Proceedings of the 2021 IEEE International Conference on Image Processing(ICIP),2021:3323-3327. [84] WANG Y,ZHANG R,ZHANG S,et al.Domain-specific suppression for adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:9603-9612. [85] KHODABANDEH M,VAHDAT A,RANJBAR M,et al.A robust learning approach to domain adaptive object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:480-490. [86] SINDAGI V A,OZA P,ASARLA R,et al.Prior-based domain adaptive object detection for hazy and rainy conditions[C]//Proceedings of the European Conference on Computer Vision,2020:763-780. [87] LIU W,REN G,YU R,et al.Image-adaptive YOLO for object detection in adverse weather conditions[J].arXiv:2112.08088,2021. [88] KIM T,JEONG M,KIM S,et al.Diversify and match:A domain adaptive representation learning paradigm for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:12456-12465. [89] SHAN Y,LU W F,CHEW C.Pixel and feature level based domain adaptation for object detection in autonomous driving[J].Neurocomputing,2019,367:31-38. [90] HSU H K,YAO C H,TSAI Y H.et al.Progressive domain adaptation for object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:749-757. [91] CHEN C,ZHENG Z,DING X,et al.Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:8869-8878. [92] SOVIANY P,IONESCU R T,ROTA P,et al.Curriculum self-paced learning for cross-domain object detection[J].Computer Vision and Image Understanding,2021,204:103166. [93] KIM Y,CHO D,HAN K,et al.Domain adaptation without source data[J].arXiv:2007.01524,2020. [94] LI R,JIAO Q,CAO W,et al.Model adaptation:Unsupervised domain adaptation without source data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9641-9650. [95] LI X,CHEN W,XIE D,et al.A free lunch for unsupervised domain adaptive object detection without source data[J].arXiv:2012.05400,2020. [96] ZHANG H,PATEL V M.Densely connected pyramid dehazing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3194-3203. [97] LIU X,MA Y,SHI Z,et al.GridDehazeNet:Attention-based multi-scale network for image dehazing[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:7314-7323. [98] WANG J,LAN C,LIU C,et al.Generalizing to unseen domains:A survey on domain generalization[J].arXiv:2103.03097,2021. |
[1] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[2] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[3] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[4] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[5] | YANG Yongbo, LI Dong. Lightweight Helmet Wearing Detection Algorithm of Improved YOLOv5 [J]. Computer Engineering and Applications, 2022, 58(9): 201-207. |
[6] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[7] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[8] | WANG Hao, LEI Yinjie, CHEN Haonan. Real Time Traffic Sign Detection Algorithm Based on Improved YOLOV3 [J]. Computer Engineering and Applications, 2022, 58(8): 243-248. |
[9] | ZHAO Jielun, ZHANG Xingzhong, DONG Hongyue. Defect Detection in Transmission Line Based on Scale-Invariant Feature Pyramid Networks [J]. Computer Engineering and Applications, 2022, 58(8): 289-296. |
[10] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[11] | SUN Liujie, ZHAO Jin, WANG Wenju, ZHANG Yusen. Multi-Scale Transformer Lidar Point Cloud 3D Object Detection [J]. Computer Engineering and Applications, 2022, 58(8): 136-146. |
[12] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[13] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[14] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[15] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||