Two-Step Transfer Learning Method for Bearing Fault Diagnosis
TAO Qisheng, PENG Cheng, MAN Junfeng, LIU Yi
1.School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China
2.School of Automation, Central South University, Changsha 410083, China
3.National Advanced Rail Transit Equipment Innovation Center, Zhuzhou, Hunan 412000, China
TAO Qisheng, PENG Cheng, MAN Junfeng, LIU Yi. Two-Step Transfer Learning Method for Bearing Fault Diagnosis[J]. Computer Engineering and Applications, 2022, 58(2): 303-312.
[1] HOANG D T,KANG H J.Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J].Cognitive Systems Research,2019,53:42-50.
[2] 李巍华,单外平,曾雪琼.基于深度信念网络的轴承故障分类识别[J].振动工程学报,2016,29(2):340-347.
LI W H,SHAN W P,ZENG X Q.Bearing fault identification based on deep belief network[J].Journal of Vibration Engineering,2016,29(2):340-347.
[3] 赵海生,刘政,张伟,等.突变磁场对W6Mo5Cr4V2高速钢刀具硬度的影响[J].钢铁研究学报,2018,30(5):368-372.
ZHAO H S,LIU Z,ZHANG W.Effects of alternating magnetic field on hardness of W6Mo5Cr4V2 high-speed steel cutting tool[J].Journal of Iron and Steel Research,2018,30(5):368-372.
[4] TAN B,ZHANG Y,PAN S J,et al.Distant domain transfer learning[C]//Proceedings of AAAI,2017:2604-2610.
[5] 莫代一,崔玲丽,王婧.基于双重Q因子的稀疏分解放在滚动轴承早期故障诊断中的引用[J].机械工程学报,2013,24(1):35-41.
MO D Y,CUI L L,WANG J.Sparse singal decomposition method based on the daul Q-factor and its application to rolling bearing early fault diagnosis[J].Journal of Mechanical Engineering,2013,24(1):35-41.
[6] 程军圣,于德介,杨宇.基于内禀模态奇异值分解与支持向量机的故障诊断方法[J].自动化学报,2006,32(3):476-480.
CHENG J S,YU D J,YANG Y.Fault diagnosis approach based on intrinsic mode singular value decomposition and support vector machines[J].Acta Automatica Sinica,2006,32(3):476-480.
[7] LIU B,RIEMENSCHNEIDER S,XU Y.Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J].Mechanical Systems & Signal Processing,2006,20(3):718-734.
[8] 郑慧峰,喻桑桑,王月兵,等.基于经验模态分解和奇异值分解的振动声调制信号分析方法研究[J].计量学报,2016(37):398-401.
ZHENG H F,YU S S,WANG Y B.Research on the analysis method of vibro-acoustic modulation signal based on EMD and SVD[J].Acta Metrologica Sinica,2016(37):398-401.
[9] ZOSSO D,DRAGOMIRETSKIY K,BERTOZZI A L,et al.Two-dimensional compact variational mode decomposition[J].Journal of Mathematical Imaging & Vision,2017,58(2):294-320.
[10] MCDONALD G L,ZHAO Q,ZUO M J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,2012,33:237-255.
[11] GAO Z W,CECATI C,DING S X.A survey of fault diagnosis and fault-tolerant techniques—part I:fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics,2015,62(6):3757-3767.
[12] 刘正平,胡浚,张龙.基于堆栈降噪自编码的轴承故障诊断方法[J].机床与液压,2018,46(15):177-181.
LIU Z P,HU J,ZHANG L.Fault diagnosis method of bearing based on stacked denoising autoencoder[J].Machine Tool & Hydraulics,2018,46(15):177-181.
[13] YANG B,LEI Y,JIA F,et al.An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J].Mechanical Systems and Signal Processing,2019,122:692-706.
[14] 李林杰.基于二维数据训练的深度学习滚动轴承故障诊断方法研究[D].成都:电子科技大学,2020.
LI L J.Research on deep learning rolling bearing fault diagnosis method based on two-dimensional data training[D].Chengdu:University of Electronic Science and Technology of China,2020.
[15] BENGIO Y,COURVILLE A.Deep learning of representations[C]//Handbook on neural information processing.[S.l.]:Springer,2013:1-28.
[16] PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[17] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems,Canada,December 13,2014.Montreal:MIT Press,2014:2672-2680.
[18] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015.
[19] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[20] XU B,WANG N,CHEN T,et al.Empirical evaluation of rectified activations in convolutional network[J].arXiv:1505.00853,2015.
[21] KINGMA D P,BA J.Adam:a method for stochastic optimization[J].arXiv:1412.6980,2014.