Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (2): 281-288.DOI: 10.3778/j.issn.1002-8331.2008-0114
• Engineering and Applications • Previous Articles Next Articles
LI Zhongsheng, YANG Yuzhong
Online:
2022-01-15
Published:
2022-01-18
李中胜,杨玉中
LI Zhongsheng, YANG Yuzhong. Research on Flexible Job Shop Scheduling Based on Minimum Number of Machines[J]. Computer Engineering and Applications, 2022, 58(2): 281-288.
李中胜, 杨玉中. 基于最小机器数的柔性作业车间调度研究[J]. 计算机工程与应用, 2022, 58(2): 281-288.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2008-0114
[1] 黄学文,陈绍芬,周阗玉,等.求解柔性作业车间调度的遗传算法综述[J/OL].计算机集成制造系统(2020-07-02)[2020-08-05].http://kns.cnki.net/kcms/detail/11.5946.TP.20200702. 1105.002.html. HUANG X W,CHEN S F,ZHOU T Y,et al.Summary of genetic algorithms for flexible job shop scheduling[J/OL].Computer Integrated Manufacturing System(2020-07-02)[2020-08-05].http://kns.cnki.net/kcms/detail/11.5946.TP.20200702. 1105.002.html. [2] 唐秋华,陈世杰,赵萌,等.机器故障下加工车间优化重调度方式预测[J].中国机械工程,2019,30(2):188-195. TANG Q H,CHEN S J,ZHAO M,et al.Prediction of optimal rescheduling mode under machine failures within job shops[J].China Mechanical Engineering,2019,30(2):188-195. [3] 吴秀丽,张志强,赵宁,等.超启发式文化基因算法优化生产与预维修集成调度问题[J].计算机集成制造系统,2019,25(8):1885-1896. WU X L,ZHANG Z Q,ZHAO N,et al.Production scheduling and preventive maintenance plan optimization with hyper-heuristics memetic algorithm[J].Computer Integrated Manufacturing Systems,2019,25(8):1885-1896. [4] 巴智勇,袁逸萍,戴毅,等.考虑机器故障的作业车间调度方案鲁棒测度方法研究[J/OL].计算机集成制造系统(2019-09-16)[2020-07-05].http:/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/11.5946.TP.20190912.1745.004.html. BA Z Y,YUAN Y P,DAI Y,et al.Research on robust measurement method of job shop scheduling scheme considering machine failure[J/OL].Computer Integrated Manufacturing Systems(2019-09-16)[2020-07-05].http:/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/11.5946.TP.20190912.1745.004.html. [5] IWONA P,BO?ENA S.A hybrid multi-objective immune algorithm for predictive and reactive scheduling[J].Journal of Scheduling,2017,20(2):165-182. [6] 李明,雷德明.考虑准备时间和关键目标的柔性作业车间低碳调度研究[J].机械工程学报,2019,55(21):139-149. LI M,LEI D M.Research on flexible job shop low carbon scheduling with setup times and key objectives[J].Journal of Mechanical Engineering,2019,55(21):139-149. [7] DEFERSHA F,ROOYANI D.An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup,machine release date and lag-time[J].Computers and Industrial Engineering,2020,147:140-165. [8] 曾程宽,刘士新.缓冲区间有限条件下的作业车间调度方法[J].东北大学学报(自然科学版),2018,39(12):1679-1684. ZENG C K,LIU S X.Job shop scheduling problem with limited output buffer[J].Journal of Northeastern University(Natural Science),2018,39(12):1679-1684. [9] 张国辉,党世杰.考虑工件移动时间的柔性作业车间调度问题研究[J].计算机应用研究,2017,34(8):2329-2331. ZHANG G H,DANG S J.Research on flexible job-shop scheduling problem considering job movement time[J].Application Research of Computers,2017,34(8):2329-2331. [10] 朱传军,邱文,张超勇,等.多目标柔性作业车间稳健性动态调度研究[J].中国机械工程,2017,28(2):173-182. ZHU C J,QIU W,ZHANG C Y,et al.Multi-objective flexible job shop dynamic scheduling strategy aiming at scheduling stability and robustness[J].China Mechanical Engineering,2017,28(2):173-182. [11] 吴秀丽,肖晓,赵宁.考虑装卸的柔性作业车间双资源调度问题[J/OL].控制与决策(2019-05-24)[2020-01-10].https://doi.org/10.13195/j.kzyjc.2019.0267. WU X L,XIAO X,ZHAO N.Dual-resource scheduling problem of flexible job shop considering loading and unloading[J/OL].Control and Decision(2019-05-24)[2020-01-10].https://doi.org /10.13195/j.kzyjc.2019.0267. [12] GU X L,HUANG M,LIANG X.A discrete particle swarm optimization algorithm with adaptive inertia weight for solving multi-objective flexible job-shop scheduling problem[J].IEEE Access,2020,8:33125-33136. [13] ZARROUK R,BENNOUR I.A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem[J].Swarm Intelligence,2019,13(2):145-168. [14] NOUIRI M,BEKRAR A,JEMAI A,et al.An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem[J].Journal of Intelligent Manufacturing,2018,29(3):603-615. [15] ZHAO B X,GAO J M,CHEN K,et al.Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines[J].Journal of Intelligent Manufacturing,2018,29(1):93-108. [16] CHAOUCH I,DRISS O B,GHEDIRA K.A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm[J].Applied Intelligence,2019,49(5):1903-1924. [17] LIANG X,HUANG M,NING T.Flexible job shop scheduling based on improved hybrid immune algorithm[J].Journal of Ambient Intelligence and Humanized Computing,2018,9(1):165-171. [18] CAI Y,CHEN J H.Flexible job shop fuzzy scheduling method based on immune genetic algorithm[J].Academic Journal of Manufacturing Engineering,2018,16(4):89-94. [19] 张超勇,董星,王晓娟,等.基于改进非支配排序遗传算法的多目标柔性作业车间调度[J].机械工程学报,2010,46(11):156-164. ZHANG C Y,DONG X,WANG X J,et al.Improved NSGA-II for the multi-objective flexible job-shop scheduling problem[J].Journal of Mechanical Engineering,2010,46(11):156-164. [20] 李尚函,胡蓉,钱斌,等.超启发式遗传算法求解模糊柔性作业车间调度[J].控制理论与应用,2020,37(2):316-330. LI S H,HU R,QIAN B,et al.Hyper-heuristic genetic algorithm for solving fuzzy flexible job shop scheduling problem[J].Control Theory and Applications,2020,37(2):316-330. [21] 石小秋,李炎炎,邓丁山,等.基于自适应变级遗传杂草算法的FJSP研究[J].机械工程学报,2019,55(6):223-232. SHI X Q,LI Y Y,DENG D S,et al.Self-adaptive multistage GA-IWO for solving flexible job shop scheduling problem[J].Journal of Mechanical Engineering,2019,55(6):223-232. [22] 姜天华.混合灰狼优化算法求解柔性作业车间调度问题[J].控制与决策,2018,33(3):503-508. JIANG T H.Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J].Control and Decision,2018,33(3):503-508. [23] 陈增强,黄朝阳,孙明玮,等.基于大变异遗传算法进行参数优化整定的负荷频率自抗扰控制[J].智能系统学报,2020,15(1):41-49. CHEN Z Q,HUANG C Y,SUN M W,et al.Active disturbance rejection control of load frequency based on big probability variation’s genetic algorithm for parameter optimization[J].CAAI Transactions on Intelligent Systems,2020,15(1):41-49. [24] 刘宁,张晶,赵圣芳.基于大变异GA-BP的MPPT的仿真与研究[J].制造业自动化,2017,39(7):111-113. LIU N,ZHANG J,ZHAO S F.Simulation and research based on cataclysmic mutation GA-BP MPPT[J].Manufacturing Automation,2017,39(7):111-113. [25] 雷英杰,张善文.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2014:43-46. LEI Y J,ZHANG S W.MATLAB genetic algorithm toolbox and application[M].Xi’an:Xidian University Press,2014:43-46. [26] WU J,WU G D,WANG J J.Flexible job-shop scheduling problem based on hybrid ACO algorithm[J].International Journal of Simulation Modelling,2017,16(3):497-505. [27] 赵诗奎.基于新型邻域结构的混合算法求解作业车间调度[J].机械工程学报,2016,52(9):141-150. ZHAO S K.A hybrid algorithm with a new neighborhood structure for the job shop scheduling problem[J].Journal of Mechanical Engineering,2016,52(9):141-150. [28] 介婧,徐新黎.智能粒子群优化计算:控制方法、协同策略及优化应用[M].北京:科学出版社,2016:183-190. JIE J,XU X L.Intelligent particle swarm optimization calculation:control method,collaborative strategy and optimization application[M].Beijing:Science Press,2016:183-190. [29] 李牧东,赵辉,吴利荣,等.基于反向学习的自适应α约束病毒种群搜索算法[J].工程科学与技术,2017,49(3):144-152. LI M D,ZHAO H,WU L R,et al.Self-adaptive α-constrained virus colony search algorithm using opposition-based learning[J].Advanced Engineering Sciences,2017,49(3):144-152. [30] 李帆,高东,许欣,等.改进蝙蝠算法柔性作业车间调度问题研究[J].计算机工程与应用,2018,54(21):265-270. LI F,GAO D,XU X,et al.Research of improved bat algorithm for flexible job-shop scheduling problem[J].Computer Engineering and Applications,2018,54(21):265-270. [31] 朱光宇,徐文婕.考虑能耗与质量的机床构件生产线多目标柔性作业车间调度方法[J].控制与决策,2019,34(2):252-260. ZHU G Y,XU W J.Multi-objective flexible job shop scheduling method for machine tool component production line considering energy consumption and quality[J].Control and Decision,2019,34(2):252-260. [32] 刘爱军,杨育,邢青松,等.多目标模糊柔性车间调度中的多种群遗传算法[J].计算机集成制造系统,2011,17(9):1954-1961. LIU A J,YANG Y,XING Q S,et al.Multi-population genetic algorithm in multi-objective fuzzy flexible workshop scheduling[J].Computer Integrated Manufacturing System,2011,17(9):1954-1961. |
[1] | WU Qinfang, WU Zhangqian, SU Zhaopin, ZHANG Guofu. Source Cell-Phone Identification Using Genetic Algorithm Optimized Temporal Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(3): 151-158. |
[2] | HUANG Tihao, LI Junqing, ZHAO Haiyong. Copy Number Variation Detection of BP Neural Network Based on Genetic Algorithm [J]. Computer Engineering and Applications, 2022, 58(1): 274-281. |
[3] | ZHANG Tianrui, WU Baoku, ZHOU Fuqiang. Research on Improved Ant Colony Algorithm for Robot Global Path Planning [J]. Computer Engineering and Applications, 2022, 58(1): 282-291. |
[4] | XIE Ruiqiang, ZHANG Huizhen. Two-Vector Wolf Pack Algorithm for Flexible Job Shop Scheduling Problem [J]. Computer Engineering and Applications, 2021, 57(7): 251-256. |
[5] | LI Yuqi, LIU Zhiqian, CHENG Ningyi, WANG Yingying, ZHU Chunli. Path Planning of UAV Under Multi-constraint Conditions [J]. Computer Engineering and Applications, 2021, 57(4): 225-230. |
[6] | YANG Wei, WU Yingying, WANG Ting. Research on Configuration Optimization Problems of Shuttle-Carrier Storage and Retrieval System [J]. Computer Engineering and Applications, 2021, 57(4): 258-265. |
[7] | LI Qian, JIANG Li, LIANG Changyong. Multi-objective Cold Chain Distribution Optimization Based on Fuzzy Time Window [J]. Computer Engineering and Applications, 2021, 57(23): 255-262. |
[8] | DU Shouxin, WU Tao. Study on Application of Double Population Hybrid Genetic Algorithm in Cut Order Planning [J]. Computer Engineering and Applications, 2021, 57(22): 182-189. |
[9] | CAO Lijia, LIU Yang. Recent Advances in Scheduling Optimization of Automated Guided Vehicles in Manufacturing Workshops [J]. Computer Engineering and Applications, 2021, 57(21): 59-67. |
[10] | CHEN Qianru, LI Yali, XU Kequan, LIU Yilong, WANG Shuqin. WKNN Feature Selection Method Based on Self-Tuning Adaptive Genetic Algorithm [J]. Computer Engineering and Applications, 2021, 57(20): 164-171. |
[11] | MA Yanfang, LI Baoyu, YANG Yifu, FENG Cuiying. Two-Echelon Capacitated Vehicle Routing Model and Algorithm for Fresh Products Distribution with Customer Classification [J]. Computer Engineering and Applications, 2021, 57(20): 287-298. |
[12] | SHI Yuqiang, TIAN Yongzheng, ZHANG Yuqi, SHI Xiaoqiu. Solving FJSP by Multi-population Genetic Algorithms with Complex Network Structure [J]. Computer Engineering and Applications, 2021, 57(2): 257-266. |
[13] | DAI Jiangtao, HAN Xiaolong. Coordinated Scheduling of Equipment in Container Terminals Considering Energy Consumption Under Different Job Status [J]. Computer Engineering and Applications, 2021, 57(19): 290-298. |
[14] | FENG Xiaodong, HUANG Shirong, DAI Guan’ou, YANG Weijia, LUO Yaozhi. Research and Application of Beetle Antennae Genetic Hybrid Algorithm [J]. Computer Engineering and Applications, 2021, 57(15): 90-100. |
[15] | SU Qing, LIN Huazhi, HUANG Jianfeng, LIN Zhiyi. Malicious Android Application Detection Combining CNN and Catboost Algorithm [J]. Computer Engineering and Applications, 2021, 57(15): 140-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||