Computer Engineering and Applications ›› 2017, Vol. 53 ›› Issue (23): 203-207.DOI: 10.3778/j.issn.1002-8331.1604-0213
Previous Articles Next Articles
LIU Xuebo, LI Deng’ao, ZHAO Jumin, LIAO Shujian
Online:
Published:
刘学博,李灯熬,赵菊敏,廖述剑
Abstract: Recent researches have proved that some types of J-wave syndrome are high-risk indicators of malignant arrhythmia, sudden cardiac death, and other illnesses. But the judgment of whether J-wave exists in most of the present researches relies only on electrocardiograms and clinical experience, which not only are time-consuming but can hardly avoid misdiagnoses. This paper, from the perspective of signal processing, proposes an approach for J wave auto-detection based on the variable step size support vector machine. After the optimal value of parameter [σ]of kernel function is fixed, SVM modelling is completed. Experimental results show the effectiveness of J-wave detection by this method, with the accuracy rate reaching high at 96.1%.
Key words: J wave, Support Vector Machine(SVM), kernel function, feature vectors, variable step size
摘要: 近期研究表明J波综合征的某些类型成为恶性心律失常、心脏性猝死等疾病的高危预警新指标。但目前大多数的研究仅通过心电图纸和临床经验来判断是否存在J波,不仅耗时较长,而且难免会存在误判。从信号处理的角度出发,提出了一种基于变步长思想的支持向量机(Support Vector Machine,SVM)方法来实现J波的自动检测。利用变步长思想寻找最优的核函数参数[σ]并完支持向量机的建模。实验结果证明,所提的方法可以有效地检测出J波,准确率为96.1%。
关键词: J波, 支持向量机(SVM), 核函数, 特征向量, 变步长
LIU Xuebo, LI Deng’ao, ZHAO Jumin, LIAO Shujian. J wave auto-detection based on variable step size support vector machine[J]. Computer Engineering and Applications, 2017, 53(23): 203-207.
刘学博,李灯熬,赵菊敏,廖述剑. 基于变步长支持向量机的J波自动检测方法[J]. 计算机工程与应用, 2017, 53(23): 203-207.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.1604-0213
http://cea.ceaj.org/EN/Y2017/V53/I23/203