Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (17): 11-15.
Previous Articles Next Articles
XU Zhengguo, ZHENG Hui, DENG Yuehua
Online:
Published:
徐正国,郑 辉,邓月华
Abstract: For distinguishing different kinds of data streams in the network, Autoregressive Conditional Duration(ACD) model is used to analyze the micro-characters of network flows in the time-domain, and the feasibility of the model is testified. One important advantage of ACD model is, without binning the unevenly sampled time series into evenly-spaced, it could obtain the features of network flows in the time-domain directly. Based on the statistical analysis of experimental data sets, the packets’ arriving time series in network flows can be fitted in with ACD model, furthermore ACD(2, 1) shows a good performance in modeling network flows of different applications.
Key words: autoregressive conditional duration, network flow, unevenly sampling, time series
摘要: 对网络中不同类型的数据流,应用自回归条件持续期模型(ACD),分析其中存在的时域微观特性,并研究ACD模型对网络数据流时序建模的适用性。使用ACD模型为具有随机到达过程的网络数据流时间序列建模,其优点是能够在不损失原始非等间隔时间序列特性的条件下,直接分析得到数据流的时域微观性质。在对实验数据集统计特性进行研究的基础上,得出数据包到达过程适用ACD模型的基本依据,采用ACD(2,1)模型对不同类型的网络数据流时间序列进行建模,结果表明其具有较好的拟合程度。
关键词: 自回归条件持续期, 网络数据流, 非等间隔采样, 时间序列
XU Zhengguo, ZHENG Hui, DENG Yuehua. Time domain analysis of micro-characters in network flows using ACD model[J]. Computer Engineering and Applications, 2016, 52(17): 11-15.
徐正国,郑 辉,邓月华. 基于ACD模型的网络数据流时域微观特性分析[J]. 计算机工程与应用, 2016, 52(17): 11-15.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2016/V52/I17/11