Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (17): 11-15.

Previous Articles     Next Articles

Time domain analysis of micro-characters in network flows using ACD model

XU Zhengguo, ZHENG Hui, DENG Yuehua   

  1. National Key Laboratory of Science and Technology on Blind Signals Processing, Chengdu 610041, China
  • Online:2016-09-01 Published:2016-09-14

基于ACD模型的网络数据流时域微观特性分析

徐正国,郑  辉,邓月华   

  1. 盲信号处理国家科技重点实验室,成都 610041

Abstract: For distinguishing different kinds of data streams in the network, Autoregressive Conditional Duration(ACD) model is used to analyze the micro-characters of network flows in the time-domain, and the feasibility of the model is testified. One important advantage of ACD model is, without binning the unevenly sampled time series into evenly-spaced, it could obtain the features of network flows in the time-domain directly. Based on the statistical analysis of experimental data sets, the packets’ arriving time series in network flows can be fitted in with ACD model, furthermore ACD(2, 1) shows a good performance in modeling network flows of different applications.

Key words: autoregressive conditional duration, network flow, unevenly sampling, time series

摘要: 对网络中不同类型的数据流,应用自回归条件持续期模型(ACD),分析其中存在的时域微观特性,并研究ACD模型对网络数据流时序建模的适用性。使用ACD模型为具有随机到达过程的网络数据流时间序列建模,其优点是能够在不损失原始非等间隔时间序列特性的条件下,直接分析得到数据流的时域微观性质。在对实验数据集统计特性进行研究的基础上,得出数据包到达过程适用ACD模型的基本依据,采用ACD(2,1)模型对不同类型的网络数据流时间序列进行建模,结果表明其具有较好的拟合程度。

关键词: 自回归条件持续期, 网络数据流, 非等间隔采样, 时间序列