Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (29): 29-33.

Previous Articles     Next Articles

Shuffled frog leaping algorithm based on particle swarm optimization searching strategy

TANG Deyu1,2, CAI Xianfa1, QI Deyu2, YANG Jin1   

  1. 1.Department of Computer, College of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
    2.Department of Computer, College of Computer Science & Engineering, South China University of Technology, Guangzhou 510006, China
  • Online:2012-10-11 Published:2012-10-22

基于量子粒子群搜索策略的混合蛙跳算法

唐德玉1,2,蔡先发1,齐德昱2,杨  进1   

  1. 1.广东药学院 医药信息工程学院 计算机系,广州 510006
    2.华南理工大学 计算机科学与工程学院 计算机系,广州 510006

Abstract: Shuffled Frog Leaping Algorithm(SFLA) is a new swarm intelligence optimization algorithm. This paper introduces a searching strategy of quantum particle swarm optimization and proposes a Shuffled Frog Leaping Algorithm based on Quantum Particle Swarm Optimization(QPSO-SFLA) since the local searching ability of basic shuffled frog leaping algorithm is not very well. Experimental results show that the new algorithm not only improves the convergence speed but also enhances the global search ability.

Key words: swarm intelligence optimization, searching strategy, shuffled frog leaping algorithm, quantum particle swarm optimization

摘要: 混合蛙跳算法(SFLA)是一种全新的群体智能优化算法。针对基本混合蛙跳算法局部搜索能力差,因而优化精度低、收敛速度慢的缺点,引入量子粒子群算法的搜索策略,提出了一种基于量子粒子群搜索策略的混合蛙跳算法(QPSO-SFLA)。通过对基准函数进行测试,实验结果表明改进的算法大大提高了算法的收敛速度,增强了算法的寻优能力。

关键词: 群体智能优化, 搜索策略, 混合蛙跳算法, 量子粒子群算法