Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (19): 59-62.

• 理论研究 • Previous Articles     Next Articles

B-spline surface reconstruction based on profile data

LIN Zi-zhi1,PAN Ri-jing1,2   

  1. 1.School of Mathematics and Computer Science,Fujian Normal University,Fuzhou 350007,China
    2.The Key Lab of Network Security and Cryptography,Fujian Normal University,Fuzhou 350007,China
  • Received:2007-09-29 Revised:2007-12-10 Online:2008-07-01 Published:2008-07-01
  • Contact: LIN Zi-zhi

基于轮廓数据的B样条曲面重建

林子植1,潘日晶1,2   

  1. 1.福建师范大学 数学与计算机科学学院,福州 350007
    2.福建师范大学 网络安全与密码技术重点实验室,福州 350007
  • 通讯作者: 林子植

Abstract: A method for fittting profile data points using B-spline surface is proposed.Firstly,the profile data points are fited by a B-spline surface with low degree,which is named controlling surface.Secondly,another B-spline surface is controlled approximating the controlling surface,which is named approximating surface.The approach completely avoids the parametrization in surface fitting.Futhermore,the surface builted with this method fitting has fewer control points,and the shape of the surface is also quite fair.

Key words: B-spline surface, profile data, approximation, parametrization, knots, least square approximation

摘要: 针对B样条曲面拟合中出现的问题和困难,提出了一种基于行组织的轮廓数据(截面数据)的曲面重建方法。该方法避免了数据点的参数化问题,使得逼近曲面拥有较好的形状和合理的控制顶点数量。该方法的基本思想是:首先构造易于控制的低阶曲面拟合数据点,此曲面称控制曲面,然后利用高次曲面逼近该曲面,此高次曲面称为逼近曲面,为所需要的重建曲面。在曲面重建中利用最佳平方逼近和光顺函数,减少了逼近曲面的控制顶点冗余,较有效地防止了逼近曲面的形状突变和曲面的扭曲,很大程度地提高了曲面的质量。

关键词: B样条曲面, 轮廓数据, 逼近, 参数化, 最佳平方逼近