Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (2): 74-78.DOI: 10.3778/j.issn.1002-8331.2009.02.021

• 研究、探讨 • Previous Articles     Next Articles

Comparison and research of mutation operators in multi-objective evolutionary algorithms

WEN Shi-hua1,2,ZHENG Jin-hua1,LI Mi-qing1   

  1. 1.Institute of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China
    2.Institute of Professional and Technology,Xiangtan University,Xiangtan,Hunan 411100,China
  • Received:2008-06-02 Revised:2008-08-25 Online:2009-01-11 Published:2009-01-11
  • Contact: WEN Shi-hua

多目标进化算法中变异算子的比较与研究

文诗华1,2,郑金华1,李密青1   

  1. 1.湘潭大学 信息工程学院,湖南 湘潭 411105
    2.湘潭大学 职业技术学院,湖南 湘潭 411100
  • 通讯作者: 文诗华

Abstract: This paper proposes a mutation over-flow dealing method to fit for the environment of MOEAs,and applies these operators successfully to multi-objective optimization problems.Then it compares these operators’ performance through its convergence quality,and it demonstrates that this over-flow dealing method is effective through a group of experiments,the mutation operators used in single-objective optimization have the respectable distribution to polynomial mutation and achieve better convergence quality.

Key words: multi-objective optimization, Multi-Objective Evolutionary Algorithm(MOEA), mutation operators, convergence quality, non-dominated solution sets

摘要: 提出了一种适应于多目标进化算法的变异越界处理策略,成功地将这些变异算子应用到多目标进化优化问题中,从多目标优化收敛性的角度比较了这些变异算子的性能。通过一组实验表明这种越界处理方法是非常有效的,单目标优化中的这些变异算子具有与多项式变异算子相当的分布性,同时取得了更好的收敛性能。

关键词: 多目标优化, 多目标进化算法, 变异算子, 收敛性, 非支配解集