Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (30): 213-216.DOI: 10.3778/j.issn.1002-8331.2008.30.065

• 工程与应用 • Previous Articles     Next Articles

Pattern recognition method for license plate character based on multilevel RBF network

LI Meng-xin1,2,WU Cheng-dong1,XIA Xing-hua2   

  1. 1.School of Information Science & Engineering,Northeastern University,Shenyang 110004,China
    2.School of Information and Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China
  • Received:2008-06-30 Revised:2008-08-01 Online:2008-10-21 Published:2008-10-21
  • Contact: LI Meng-xin

一种基于分级RBF网络的车牌字符识别方法

李孟歆1,2,吴成东1,夏兴华2   

  1. 1.东北大学 信息科学与工程学院,沈阳 110004
    2.沈阳建筑大学 信息与控制工程学院,沈阳 110168
  • 通讯作者: 李孟歆

Abstract: A new recognition algorithm for license plate character based on multi-level RBF network is proposed.Two-level RBF network is adopted.According to recognition results from one-level network and the confidence levels,recognition distribution table is built,and two-level network is accordingly designed.As a result,12 two-level sub-networks are formed.A large amount of samples are used for system test.Overall recognition accuracy is 85.4%.Through contrastive research,the method presented is proved to be effective and advanced.

Key words: license plate recognition, Radial Basis Function(RBF) network, two-level network, recognition accuracy

摘要: 提出了一种基于分级RBF神经网络的车牌字符识别方法,采用两级RBF神经网络结构,由一级网络识别后,根据识别结果和置信度,建立识别分布图,进行二级网络设计,确定了12个二级子网。RBF网络中自动确定隐层神经元数,无需实验调整。用大量样本对系统进行测试,车牌整体识别率达到了85.4%,通过对比性研究,验证了该方法的有效性和先进性。

关键词: 车牌识别, 径向基函数(RBF)网络, 二级网络, 识别率