Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (17): 5-8.DOI: 10.3778/j.issn.1002-8331.2009.17.002

• 博士论坛 • Previous Articles     Next Articles

Statistical shape based approach to image segmentation using level sets

CHEN Qiang   

  1. School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094,China
  • Received:2009-02-25 Revised:2009-03-25 Online:2009-06-11 Published:2009-06-11
  • Contact: CHEN Qiang

结合形状统计的水平集图像分割

陈 强   

  1. 南京理工大学 计算机科学与技术学院,南京 210094
  • 通讯作者: 陈 强

Abstract: This paper proposes a level set implementation of the Mumford-Shah model integrating prior shape statistical knowledge.The statistical shape based approach to the image segmentation using level sets mainly consists of the constructions of the prior shape model and the shape energy term.Aiming at these two parts,two pieces of work are mainly done:(1)A simple and feasible construction method of the prior shape model is proposed,which is based on binary images;(2)A new construction method of shape energy term is presented,which considers the global and local shape information at the same time,and without introducing pose parameters makes evolving surface stable.Promising experimental results are demonstrated on left ventricle Magnetic Resonance(MR) images of long axis with tag lines and a synthetic image.

Key words: shape statistic, shape alignment, level set, Mumford-Shah model, image segmentation

摘要: 给出了一种结合先验形状统计信息的Mumford-Shah模型的水平集实现方法。结合形状统计的水平集图像分割主要包括先验形状模型的构造和形状能量项的构造,针对这两个主要方面做了如下两点工作:(1)提出了一种简单可行的先验形状模型构造方法;(2)重新构造了形状能量项,它综合考虑了全局和局部形状信息,且不含形状姿态参量,使曲面演化稳定可靠。带标记线左心室核磁共振(MR)长轴图像的实验结果和合成图像的分割结果证明了该方法的有效性。

关键词: 形状统计, 形状配准, 水平集, Mumford-Shah模型, 图像分割