Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (17): 1-4.DOI: 10.3778/j.issn.1002-8331.2009.17.001

• 博士论坛 • Previous Articles     Next Articles

Study on consensus function based on clustering algorithms of categorical data

LUO Hui-lan1,2,WEI Hui1   

  1. 1.School of Computer Science & Technology,Fudan University,Shanghai 200433,China
    2.School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China
  • Received:2009-01-04 Revised:2009-02-10 Online:2009-06-11 Published:2009-06-11
  • Contact: LUO Hui-lan

一致性函数研究

罗会兰1,2,危 辉1   

  1. 1.复旦大学 计算机科学技术学院,上海 200433
    2.江西理工大学 信息工程学院,江西 赣州 341000
  • 通讯作者: 罗会兰

Abstract: A consensus scheme via categorical data clustering algorithm is proposed.A combined partition is found as a solution to the corresponding categorical data clustering problem using the k-modes and LIMBO algorithm.Experimental results demonstrate the effectiveness of the proposed method.

Key words: clustering, ensemble learning, consensus function

摘要: 通过把聚类集体当成一个概念型数据集,把聚类集体一致性函数问题转换成了一个普通的聚类问题,应用概念型数据聚类算法k-modes和LIMBO来进行聚类集成。实验结果证明用概念型数据聚类算法进行集成效果理想。

关键词: 聚类, 集成学习, 一致性函数