Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (21): 238-241.DOI: 10.3778/j.issn.1002-8331.2010.21.069

• 工程与应用 • Previous Articles     Next Articles

Identification of dynamic nonlinear systems based on modified LSSVM

DU Zhi-yong1,WANG Xian-fang2,ZHENG Li-yuan3   

  1. 1.Henan Mechanical and Electrical Engineering College,Xinxiang,Henan 453002,China
    2.School of Communication and Control Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China
    3.School of Electrical and Control Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China
  • Received:2009-02-05 Revised:2009-04-07 Online:2010-07-21 Published:2010-07-21
  • Contact: DU Zhi-yong

基于改进的LSSVM辨识动态非线性时变系统

杜志勇1,王鲜芳2,郑丽媛3   

  1. 1.河南机电高等专科学校,河南 新乡 453002
    2.江南大学 通信与控制工程学院 自动化研究所,江苏 无锡 214122
    3.辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105
  • 通讯作者: 杜志勇

Abstract: According to the problem about difficult to identify the nonlinear time-varying system,a new identification method is proposed based on modified Least Squares Support Vector Machines(LSSVM).During the algorithm’s training process,the vector base learning and automatic iterative procedures are introduced based on weighted least squares support vector machines,and a small support vector set can be obtained adaptively.Meanwhile the weights are determined by a robust method in order to reduce the effect of the outliers.Simulating for a nonlinear time-varying system,the result shows that the proposed method has a better robustness,sparseness of support vector and a real-time performance.

摘要: 针对非线性时变系统难以辨识的问题,提出了一种基于改进最小二乘支持向量机的辨识新方法。该方法在加权最小二乘支持向量机的基础上,引入用矢量基学习和自适应迭代相结合的方式得到一个小的支持向量,同时采用加权方法确定权值系数以减小训练样本中非高斯噪声的影响。通过对动态非线性时变系统的仿真,结果表明该算法具有较好的鲁棒性、支持向量稀疏性和动态建模实时性。

CLC Number: