Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (4): 208-211.

• 工程与应用 • Previous Articles     Next Articles

Face recognition with single training sample per person based on generalized slide window and weighted 2DLDA

CHEN Cai-kou1,2,HUANG Jian-ping1,LIU Yong-jun1   

  1. 1.Information Engineering College,Yangzhou University,Yangzhou,Jiangsu 225009,China
    2.College of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094,China
  • Received:2007-05-29 Revised:2007-08-02 Online:2008-02-01 Published:2008-02-01
  • Contact: CHEN Cai-kou

基于泛滑动窗与加权2DLDA的单样本人脸识别

陈才扣1,2,黄建平1,刘永俊1   

  1. 1.扬州大学 信息工程学院,江苏 扬州 225009
    2.南京理工大学 计算机科学与技术学院,南京 210094
  • 通讯作者: 陈才扣

Abstract: For face recognition with single training sample per person,the conventional face recognition methods which work with many training samples don’t function well.Especially,a number of methods based on Fisher linear discriminant criterion can’t work because the within-class scatter matrix is a matrix with all elements being zero.To overcome the above problem,we propose a new sample augment method,called generalized slide window,in this paper.In order to effectively maintain and strengthen the within-class and between-class information,we obey the rule“big window,small step” to produce a set of window images for each training image.Finally,weighted two-dimensional Fisher linear discriminant analysis is performed on the window images obtained.The experimental results on ORL face database show that the proposed method is effective and promising in face recognition with single training sample per person.

Key words: single training sample, generalized slide window, weighted 2DLDA, face recognition

摘要: 对于单训练样本人脸识别,基于每人多个训练样本的传统人脸识别算法效果均不太理想。尤其是基于Fisher线性鉴别准则的一些方法,由于类内散布矩阵为零矩阵,根本无法进行识别。针对这一问题进行了分析研究,提出了一种新的样本扩充方法,即泛滑动窗法。采用“大窗口,小步长”的机制进行窗口图像采集和样本扩充,不仅增加了训练样本,而且充分保持和强化了原始样本模式固有的类内和类间信息。然后,使用加权二维线性鉴别分析方法(Weighted 2DLDA)对上面获得的窗口图像进行特征抽取。在ORL国际标准人脸库上进行的实验表明了所提算法的可行性和有效性。

关键词: 单样本, 泛滑动窗, 加权二维线性鉴别分析, 人脸识别