Computer Engineering and Applications ›› 2007, Vol. 43 ›› Issue (15): 72-75.

• 学术探讨 • Previous Articles     Next Articles

Research of profit-sharing reinforcement learning method based on semi-autonomous agent

YANG Ke-wei,ZHANG Shao-ding,CEN Kai-hui,TAN Yue-jin   

  1. School of Information and Management,National University of Defense Technology,Changsha 410073,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-05-21 Published:2007-05-21
  • Contact: YANG Ke-wei

基于半自治agent的profit-sharing增强学习方法研究

杨克巍,张少丁,岑凯辉,谭跃进   

  1. 国防科技大学 信息系统与管理学院,长沙 410073
  • 通讯作者: 杨克巍

Abstract: We exert the profit-sharing reinforcement learning method into the semi-autonomous agent system,and compare it with the other reinforce learning method——Q-learning.Profit-sharing method is more robust and fit for the dynamic environment which includes many uncertain factors,especially in the partial MDPs(Markov Decision Processes) environment.Facing the semi -autonomous property of the agent,we propose an improving learning method of profit-sharing in the semi-autonomous agent system and test it in a combat simulation environment that finds the safety hidden space in battlefield.At last we contract and analyze these methods to the others.

Key words: reinforcement learning, semi-autonomous agent, profit-sharing, Q-learning

摘要: 在基于半自治agent的系统中应用profit-sharing增强学习方法,并与基于动态规划的Q-learning 增强学习方法进行比较,在不确定因素较多的动态环境中,当系统状态变化不是一个马尔科夫过程时profit-sharing方法具有很大优势。根据半自治agent中半自治的特性——受制性,提出了一种面向基于半自治agent的增强学习模型,以战场仿真中安全隐蔽的寻找模型为实例对基于半自治agent的profit-sharing增强学习模型进行了试验分析。

关键词: 增强学习, 半自治agent, profit-sharing, Q-learning