Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (7): 15-17.DOI: 10.3778/j.issn.1002-8331.2010.07.005

• 博士论坛 • Previous Articles     Next Articles

Forecasting gas emission amount based wavelet support vector regression

DAI Hong-liang1,2   

  1. 1.Department of Mathematics and Computational Science,Guangdong University of Business Studies,Guangzhou 510320,China
    2.Department of Mathematics,Sun Yat-Sen University,Guangzhou 510275,China
  • Received:2009-11-24 Revised:2010-01-05 Online:2010-03-01 Published:2010-03-01
  • Contact: DAI Hong-liang

小波支持向量回归在瓦斯涌出量预测中的应用

戴宏亮1,2   

  1. 1.广东商学院 数学与计算科学学院,广州 510320
    2.中山大学 数学与计算科学学院,广州 510275
  • 通讯作者: 戴宏亮

Abstract: Aiming at localization,randomicity and fuzziness of gas emission amount,a new wavelet support vector regression model with a new wavelet support vector kernel is proposed,and the intelligent genetic algorithm is used to optimize the model’s parameters.Experiment results show that wavelet support vector regression has higher accuracy and runs faster than standard support vector regression and intelligent support vector regression.

Key words: wavelet, support vector machine, intelligent genetic algorithm, gas, forecast

摘要: 针对瓦斯涌出量的局部性、随机性、模糊性等特点,提出一种新的小波支持向量核构造小波支持向量回归模型,并且运用一种新型的智能遗传算法优选模型参数。实验结果表明,所提出的小波支持向量回归模型预测瓦斯涌出量比标准支持向量回归模型、智能支持向量回归模型预测精度高、速度快。

关键词: 小波, 支持向量机, 智能遗传算法, 瓦斯, 预测

CLC Number: