Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (8): 267-273.DOI: 10.3778/j.issn.1002-8331.2401-0119

• Network, Communication and Security • Previous Articles     Next Articles

Dynamic Traffic Prediction of SDN Under Attention Mechanism of Spatiotemporal Graph

LYU Guanghong, WANG Kun   

  1. 1.College of Computer, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
    2.School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
  • Online:2025-04-15 Published:2025-04-15

时空图注意力机制下的SDN网络动态流量预测

吕光宏,王坤   

  1. 1.四川大学锦江学院 计算机学院,四川 眉山 620860
    2.西南石油大学 计算机科学学院,成都 610500

Abstract: Addressing the issue of static spatio-temporal dependency in traffic prediction for SDN (software-defined networking) traffic engineering, this paper proposes a dynamic network traffic prediction method, AGCNGRU (attention mechanism for GCNGRU model), which integrates graph convolutional neural network (GCN) and gated recurrent unit (GRU) with an attention mechanism. By leveraging GCN to capture the spatial dependency of traffic between nodes in the network and GRU to capture the temporal dependency of traffic flowing through various nodes in the network, this method designs the weight of each hidden state through a temporal attention mechanism to adjust the importance of traffic information at different time points. Meanwhile, a data-driven spatial attention mechanism is employed to dynamically and adaptively adjust the Laplace matrix, enabling the dynamic extraction of spatio-temporal correlations from network information data and ultimately achieving accurate dynamic traffic prediction. Experiments conducted on the GEANT dataset show that the proposed method reduces the mean squared error by 24.8% compared to GCNGRU and by 66.4% compared to GRU. Furthermore, when compared with traditional routing algorithms such as OSPF and DDPG, the network performance is improved by 24% over OSPF and 8.1% over DDPG at 90% traffic load intensity, further demonstrating the practicality and effectiveness of the AGCNGRU algorithm in accurately predicting network traffic.

Key words: software-defined networking (SDN), traffic prediction, graph convolution neural network, gating recursive unit

摘要: 针对SDN流量工程中流量预测基于静态时空依赖的问题,提出了一种基于注意力机制的图卷积神经网络(GCN)与门控递归单元(GRU)集成的动态网络流量预测方法——AGCNGRU(attention mechanism for GCNGRU model)。借助GCN捕获网络中节点之间的流量空间依赖性和GRU捕获流量经过网络中各节点的时间依赖性,通过时间注意力机制设计每个隐藏状态的权重,以调整时间点流量信息的重要性,同时通过数据驱动空间注意力机制动态自适应调整Laplace矩阵,实现动态提取网络信息数据时空相关性,最终完成动态流量精准预测。在GEANT的数据集上的实验表明,所提出的方法在均方误差方面比GCNGRU减少24.8%,比GRU减少66.4%,并通过与传统路由算法OSPF、DDPG算法比较,在90%的流量负载强度下,网络性能比OSPF提升了24%,比DDPG提升了8.1%,进一步说明了AGCNGRU算法网络流量准确预测带来的时效性和有效性。

关键词: 软件定义网络(SDN), 流量预测, 图卷积神经网络, 门控递归单元