[1] ABBASI M R, GULERIA A, DEVI M S. Traffic engineering in software defined networks: a survey[J]. Journal of Telecommunications and Information Technology, 2016, 4: 3-14.
[2] 杨洋, 吕光宏, 赵会, 等. 深度学习在软件定义网络研究中的应用综述[J]. 软件学报, 2020, 31(7): 2184-2204.
YANG Y, LYU G H, ZHAO H, et al. Survey on deep learning applications in software defined networking research[J]. Journal of Software, 2020, 31(7): 2184-2204.
[3] MYKOLA B, KRYVINSKA N, BESHLEY H, et al. Traffic engineering and QoS/QoE supporting techniques for emerging service-oriented software-defined network[J]. Journal of Communications and Networks, 2024, 26(1): 99-114.
[4] LANER M, SVOBODA P, RUPP M, et al. Parsimonious fitting of long-range dependent network traffic using ARMA models[J]. IEEE Communications Letters, 2013, 17(12): 2368-2371.
[5] ZHAO X C, DU D J, ZHANG Y. Prediction of SDN heterogeneous network traffic based on improved LSTM with self-attention mechanism[C]//Proceedings of the 8th International Conference on Power and Renewable Energy, 2023: 2016-2021.
[6] GAO K H, LI D, CHEN L, et al. Incorporating intra-flow dependencies and inter-flow correlations for traffic matrix prediction[C]//Proceedings of the IEEE/ACM 28th International Symposium on Quality of Service, 2020: 1-10.
[7] JOSE S V, ALMASAN P, GAIMES-FERRIOL M, et al. Graph neural networks for communication networks: context, use cases and opportunities[J]. IEEE Network, 2023, 37(2): 146-153.
[8] YANG L, GU X X, SHI H F, et al. A noval satellite network traffic prediction method based on GCN-GRU[C]//Proceedings of the International Conference on Wireless Communications and Signal Processing, 2020: 718-723.
[9] WANG X T, SUN Y B, WANG X, et al. Traffic matrix prediction in SDN based on spatial-temporal residual graph convolutional network[C]//Proceedings of the 35th Chinese Control and Decision Conference, 2023: 3382-3387.
[10] 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态图卷积网络城市交通流量预测[J]. 软件学报, 2024, 35(4): 2204-2225.
ZHAO W Z, YUAN G, ZHANG Y M, et al. Multi-view fused spatial-temporal dynamic graph convolutional network for urban traffic flow prediction[J]. Journal of Software, 2024, 35(4): 2204-2225.
[11] XU W, LIU J J, YAN J W, et al. Dynamic spatiotemporal graph wavelet network for traffic flow prediction[J]. IEEE Internet of Things Journal, 2024, 11(5): 8019-8029.
[12] XIONG Y J, WANG H J. Spatio-temporal contextual conditions causality and spread delay-aware modeling for traffic flow prediction[J]. IEEE Access, 2024, 12: 21250-2126.
[13] HUANG S Y, ZHANG H, WANG X F, et al. Fine-grained spatio-temporal distribution prediction of mobile content delivery in 5G ultra-dense networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 469-482.
[14] NAN H, LI R D, ZHU X Y, et al. Spatio-temporal identity multi-graph convolutional network for traffic prediction in the metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(3): 669-679.
[15] GUO K, HU Y L, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1138- 1149.
[16] VASWANI A, SHAZEER N, PARMAR N. et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems, 2017: 6000-6010.
[17] GUO K, HU Y L, QIAN Z, et al. Dynamic graph convolution network for traffic forecasting based on latent network of laplace matrix estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1009-1018.
[18] UHLIG S, QUOITIN B, LEPROPRE J, et al. Providing public intradomain traffic matrices to the research community[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(1): 83-86.
[19] HOU Y N, LIU L F, WEI Q, et al. A novel DDPG method with prioritized experience replay[C]//Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics, 2017: 316-321. |