[1] PAUL S, PATI U C. A comprehensive review on remote sensing image registration[J]. International Journal of Remote Sensing, 2021, 42(14): 5396-5432.
[2] 田雪伟, 汪佳丽, 陈明, 等. 改进SegFormer网络的遥感图像语义分割方法[J]. 计算机工程与应用, 2023, 59(8): 217-226.
TIAN X W, WANG J L, CHEN M, et al. Improved SegFormer network based method for semantic segmentation of remote sensing images[J]. Computer Engineering and Applications, 2023, 59(8): 217-226.
[3] MA J, JIANG X, FAN A, et al. Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision, 2021, 129: 23-79.
[4] FENG R, SHEN H, BAI J, et al. Advances and opportunities in remote sensing image geometric registration: a systematic review of state-of-the-art approaches and future research directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 120-142.
[5] ZHANG X, WANG Y, LIU H. Robust optical and SAR image registration based on OS-SIFT and cascaded sample consensus[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[6] YANG Z, DAN T, YANG Y. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018, 12(6): 385-385.
[7] 陈颖, 张祺, 李文举, 等. 参数合成空间变换网络的遥感图像一致性配准[J]. 中国图象图形学报, 2021, 26(12): 2964-2980.
CHEN Y, ZHANG Q, LI W J, et al. Consistent registration of remote sensing images in parametric synthesis’ spatial transformation network[J]. Journal of Image and Graphics, 2021, 26(12): 2964-2980.
[8] PARK J, NAM W, LEE S. A two-stream symmetric network with bidirectional ensemble for aerial image matching[J]. Remote Sensing, 2020, 12(3): 465-484.
[9] 田梨梨, 程欣宇, 唐堃, 等. 集成注意力增强和双重相似性引导的多模态脑部图像配准[J]. 中国图象图形学报, 2021, 26(9): 2219-2232.
TIAN L L, CHENG X Y, TANG K, et al. Multimodal brain image registration with integrated attention augmentation and dual similarity guidance[J]. Journal of Image and Graphics, 2021, 26(9): 2219-2232.
[10] CHEN W, WANG Z, LI H. Get better 1 pixel PCK: ladder scales correspondence flow networks for remote sensing image matching in higher resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 742-751.
[11] CHEFER H, GUR S, WOLF L. Transformer interpretability beyond attention visualization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 782-791.
[12] GAO L, LIU H, YANG M, et al. STransFuse: fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10990-11003.
[13] XU Z, ZHANG W, ZHANG T, et al. Efficient Transformer for remote sensing image segmentation[J]. Remote Sensing, 2021, 13(18): 3585-3609.
[14] ZHANG M, LIU Z, FENG J, et al. Remote sensing image change detection based on deep multi-scale multi-attention siamese Transformer network[J]. Remote Sensing, 2023, 15(3): 842-866.
[15] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368.
[16] 李翔, 张涛, 张哲, 等. Transformer在计算机视觉领域的研究综述[J]. 计算机工程与应用, 2023, 59(1): 1-14.
LI X, ZHANG T, ZHANG Z, et al. Survey of Transformer research in computer vision[J]. Computer Engineering and Applications, 2023, 59(1): 1-14.
[17] KHAN S, NASEER M, HAYAT M, et al. Transformers in vision: a survey[J]. ACM Computing Surveys (CSUR), 2022, 54(10s): 1-41.
[18] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer. 2021[J]. arXiv:2110.02178, 2021.
[19] 王伟, 陈颖, 王嘉浩, 等. 基于注意力和特征融合的光学遥感图像配准[J]. 激光杂志, 2023, 44(5): 174-181.
WANG W, CHEN Y, WANG J H, et al. Optical remote sensing image registration based on attention and feature fusion[J]. Laser Journal, 2023, 44(5): 174-181.
[20] WANG R, AN S, LIU W, et al. Invertible residual blocks in deep learning networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 10167-10173.
[21] 聂雄锋, 王俊英, 董方敏, 等. 融合注意力机制的多模态动漫风格迁移方法[J]. 计算机工程与应用, 2023, 59(15): 223-234.
NIE X F, WANG J Y, DONG F M et al. Multimodal animation style transfer method fused with attention mechanism[J]. Computer Engineering and Applications, 2023, 59(15): 223-234.
[22] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[23] CHEN J, ZHANG D, WU Y, et al. A context feature enhancement network for building extraction from high-resolution remote sensing imagery[J]. Remote Sensing, 2022, 14(9): 2276.
[24] YUAN J, WANG S. HCFPN: hierarchical contextual feature-preserved network for remote sensing scene classification[J]. Remote Sensing, 2023, 15(3): 810.
[25] 李松涛, 李维刚, 甘平, 等. 基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法[J]. 电子与信息学报, 2022, 44(12): 4384-4394.
LI S T, LI W G, GANG P, et al. Multi-constrained non-negative matrix factorization algorithm based on Sinkhorn distance feature scaling[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4384-4394.
[26] IGNACIO R, RELJA A, JOSEF S. Convolutional neural network architecture for geometric matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2553-2567.
[27] DOU J, QIN Q, TU Z. Multi-modal image registration based on local self-similarity and bidirectional matching[J]. Pattern Recognition and Image Analysis, 2021, 31: 7-17.
[28] 王爽, 焦李成, 方帅, 等. 基于深度学习的异源图像匹配方法:CN 201810277816.7[P]. 2018-09-14.
WANG S, JIAO L C, FANG S, et al. Heterogeneous image matching method based on deep learning: CN 201810277816.7[P]. 2018-09-14.
[29] YAO Y X, ZHANG Y J, WANG Y, et al. Multi-modal remote sensing image matching considering co-occurrence filter[J]. IEEE Transactions on Image Processing, 2022, 31: 2584-2597. |