[1] BISWAL P, MOHANTY P K. Development of quadruped walking robots: a review[J]. Ain Shams Engineering Journal, 2021, 12(2): 2017-2031.
[2] 杨钧杰, 孙浩, 王常虹, 等. 四足机器人研究综述[J]. 导航定位与授时, 2019, 6(5): 61-73.
YANG J J, SUN H, WANG C H, et al. An overview of quadruped robots[J]. Navigation Positioning and Timing, 2019, 6(5): 61-73.
[3] 张鹏翔, 廖启征, 魏世民, 等. 液压驱动的四足机器人控制系统研究[J]. 液压与气动, 2011, 35(1): 29-31.
ZHANG P X, LIAO Q Z, WEI S M, et al. The research of control system for quadruped robot with hydraulic actuate[J]. Chinese Hydraulics & Pneumatics, 2011, 35(1): 29-31.
[4] ZUCKER M, RATLIFF N, STOLLE M, et al. Optimization and learning for rough terrain legged locomotion[J]. International Journal of Robotics Research, 2011, 30(2): 175-191.
[5] KALAKRISHNAN M, BUCHLI J, PASTOR P, et al. Learning, planning, and control for quadruped locomotion over challenging terrain[J]. International Journal of Robotics Research, 2011, 30(2): 236-258.
[6] TANG M Q, SHENG J W, SUN S Y. A coverage optimization algorithm for underwater acoustic sensor networks based on Dijkstra method[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1769-1771.
[7] 郭聚刚, 于军琪, 冯春勇, 等. 基于改进A*算法的机器人不平坦地形全局路径规划[J]. 计算机工程与应用, 2025, 61(5): 309-322.
GUO J G, YU J Q, FENG C Y, et al. Global path planning for robots on uneven terrain based on improved A* algorithm[J]. Computer Engineering and Applications, 2025, 61(5): 309-322.
[8] 刘树博, 张志远, 李智, 等. 基于双向区域RRT*的陪护机器人自主路径规划[J/OL]. 计算机工程与应用, 2024: 1-12 (2024-12-25)[2025-01-22]. https://kns.cnki.net/kcms/detail/11.2127.TP. 20241225.0852.002.html.
LIU S B, ZHANG Z Y, LI Z, et al. Autonomous path planning for companion robots based on bidirectional regional RRT[J/OL]. Computer Engineering and Applications, 2024: 1-12(2024-12-25)[2025-01-22]. https://kns.cnki.net/kcms/detail/11. 2127.TP.20241225.0852.002.html.
[9] 罗征志, 韩怡可, 张鑫, 等. 改进RRT-Connect与DWA算法的巡检机器人路径规划研究[J]. 计算机工程与应用, 2024, 60(15): 344-354.
LUO Z Z, HAN Y K, ZHANG X, et al. Research on path planning of inspection robot with improved RRT-connect and DWA algorithm[J]. Computer Engineering and Applications, 2024, 60(15): 344-354.
[10] CHEN P Z, PEI J A, LU W Q, et al. A deep reinforcement learning based method for real-time path planning and dyn-amic obstacle avoidance[J]. Neurocomputing, 2022, 497: 64-75.
[11] 王凤英, 陈莹, 袁帅, 等. 自注意力机制结合DDPG的机器人路径规划研究[J]. 计算机工程与应用, 2024, 60(19): 158-166.
WANG F Y, CHEN Y, YUAN S, et al. Robot path planning based on self-attention mechanism combined with DDPG[J]. Computer Engineering and Applications, 2024, 60(19): 158-166.
[12] BELLICOSO C D, BJELONIC M, WELLHAUSEN L, et al. Advances in real-world applications for legged robots[J]. Journal of Field Robotics, 2018, 35(8): 1311-1326.
[13] LIU Y F, JIANG L, ZOU F Q, et al. Research on path planning of quadruped robot based on globally mapping localization[C]//Proceedings of the 2020 3rd International Conference on Unmanned Systems. Piscataway: IEEE, 2020: 346-351.
[14] WANG P, ZHOU X Y, ZHAO Q T, et al. Search-based kinodynamic motion planning for omnidirectional quadruped robots[C]//Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway: IEEE, 2021: 823-829.
[15] 周坤, 李川, 李超, 等. 面向未知复杂地形的四足机器人运动规划方法[J]. 机械工程学报, 2020, 56(2): 210-219.
ZHOU K, LI C, LI C, et al. Motion planning method for quadruped robots walking on unknown rough terrain[J]. Journal of Mechanical Engineering, 2020, 56(2): 210-219.
[16] 周枫林, 赵家澳, 龙厚云, 等. 基于改进RRT算法的四足机器人路径规划[J]. 湖南工业大学学报, 2024, 38(6): 55-62.
ZHOU F L, ZHAO J A, LONG H Y, et al. Path planning of quadruped robots based on improved RRT algorithm[J]. Journal of Hunan University of Technology, 2024, 38(6): 55-62.
[17] HWANGBO J, LEE J, DOSOVITSKIY A, et al. Learning agile and dynamic motor skills for legged robots[J]. Science Robotics, 2019, 4(26): eaau5872.
[18] ASWIN NAHRENDRA I M, YU B, MYUNG H. DreamWaQ: learning robust quadrupedal locomotion with implicit terrain imagination via deep reinforcement learning[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 5078-5084.
[19] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2011: 2520-2525.
[20] MIAO T L, EL AMAM E, SLAETS P, et al. An improved real-time collision-avoidance algorithm based on Hybrid A* in a multi-object-encountering scenario for autonomous surface vessels[J]. Ocean Engineering, 2022, 255: 111406.
[21] SAINI R, KALE J G, KARLE M, et al. A unique approach for motion planning for autonomous vehicle using modified lattice planner[R]. SAE Technical Paper Series, 2021.
[22] REEDS J, SHEPP L. Optimal paths for a car that goes both forwards and backwards[J]. Pacific Journal of Mathematics, 1990, 145(2): 367-393.
[23] 汪瀚洋, 卢厚清, 陈亮, 等. 结合B样条优化的UAV多区域路径规划融合算法[J]. 计算机测量与控制, 2022, 30(9): 193-200.
WANG H Y, LU H Q, CHEN L, et al. Fused algorithm for the planning of UAV path between multiple areas combined with B-spline optimization[J]. Computer Measurement & Control, 2022, 30(9): 193-200.
[24] FELZENSZWALB P F, HUTTENLOCHER D P. Distance transforms of sampled functions[J]. Theory of Computing, 2012, 8(1): 415-428.
[25] LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1): 503-528.
[26] ZHOU X, WANG Z P, YE H K, et al. EGO-Planner: an ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 478-485. |