[1] 危双丰, 庞帆, 刘振彬, 等. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究, 2020, 37(2): 327-332.
WEI S F, PANG F, LIU Z B, et al. Survey of lidar-based SLAM algorithm[J]. Application Research of Computers, 2020, 37(2): 327-332.
[2] 姜明国, 陆波. 阿克曼原理与矩形化转向梯形设计[J]. 汽车技术, 1994(5): 16-19.
[3] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.
[4] DE FREITAS N, GORDON N J. Sequential monte carlo methods in practice[M]. New York: Springer, 2001.
[5] UMARI H, MUKHOPADHYAY S. Autonomous robotic exploration based on multiple rapidly-exploring randomized trees[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017: 1396-1402.
[6] XU W, CAI Y, HE D, et al. FAST-LIO2: fast direct Lidar-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073.
[7] ZHU F, REN Y, ZHANG F. Robust real-time lidar-inertial initialization[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022: 3948-3955.
[8] HERTZBERG C, WAGNER R, FRESE U, et al. Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds[J]. arXiv:1107. 1119, 2011.
[9] CAI Y, XU W, ZHANG F. ikd-Tree: an incremental KD tree for robotic applications[J]. arXiv:2102.10808, 2021.
[10] SOLA J. Quaternion kinematics for the error-state Kalman filter[J]. arXiv:1711.02508, 2017.
[11] YANG Y, LIU X. A re-examination of text categorization methods[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999: 42-49.
[12] SHAN T, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled Lidar inertial odometry via smoothing and mapping[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 5135-5142.
[13] ZHANG L, HELMBERGER M, FU L F T, et al. Hilti-Oxford dataset: a millimetre-accurate benchmark for simultaneous localization and mapping[J]. arXiv:2208.09825, 2022.
[14] YIN J, LI A, LI T, et al. M2DGR: a multi-sensor and multi-scenario SLAM dataset for ground robots[J]. IEEE Robotics and Automation Letters, 2021, 7(2): 2266-2273.
[15] GRUPP M. EVO: python package for the evaluation of odometry and slam[EB/OL]. (2019-03-01)[2023-01-07]. https://github. com/MichaelGrupp/evo.
[16] ZHANG Z, SCARAMUZZA D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018: 7244-7251. |